Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Hipóxia , Fibroblastos , Adaptação Fisiológica , Neoplasias/genéticaRESUMO
Receptor-interacting protein kinase 3 (RIPK3) is the primary regulator of necroptotic cell death. RIPK3 expression is often silenced in various cancer cells, which suggests that it may have tumor suppressor properties. However, the exact mechanism by which RIPK3 negatively regulates cancer development and progression remains unclear. This report indicates that RIPK3 acts as a potent regulator of the homeostatic proliferation of CD4+ CD8+ double-positive (DP) thymocytes. Abnormal proliferation of RIPK3-deficient DP thymocytes occurs independently of the well-known role for RIPK3 in necroptosis (upstream of MLKL activation), and is associated with an incidental thymic mass, likely thymic hyperplasia. In addition, Ripk3-null mice develop increased thymic tumor formation accompanied by reduced host survival in the context of an N-ethyl-N-nitrosourea (ENU)-induced tumor model. Moreover, RIPK3 deficiency in p53-null mice promotes thymic lymphoma development via upregulated extracellular signal-regulated kinase (ERK) signaling, which correlates with markedly reduced survival rates. Mechanistically, lymphocyte-specific protein tyrosine kinase (LCK) activates RIPK3, which in turn leads to increases in the phosphatase activity of protein phosphatase 2 (PP2A), thereby suppressing hyper-activation of ERK in DP thymocytes. Overall, these findings suggest that a RIPK3-PP2A-ERK signaling axis regulates DP thymocyte homeostasis and may provide a potential therapeutic target to improve thymic lymphoma therapies.
Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfoma , Proteína Serina-Treonina Quinases de Interação com Receptores , Neoplasias do Timo , Animais , Camundongos , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Linfoma/metabolismo , Camundongos Knockout , Proteína Fosfatase 2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Timócitos/metabolismo , Neoplasias do Timo/metabolismoRESUMO
Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/ gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sexbiased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.
RESUMO
OBJECTIVES: Recently, necroptosis has attracted increasing attention in arthritis research; however, it remains unclear whether its regulation is involved in osteoarthritis (OA) pathogenesis. Since receptor-interacting protein kinase-3 (RIP3) plays a pivotal role in necroptosis and its dysregulation is involved in various pathological processes, we investigated the role of the RIP3 axis in OA pathogenesis. METHODS: Experimental OA was induced in wild-type or Rip3 knockout mice by surgery to destabilise the medial meniscus (DMM) or the intra-articular injection of adenovirus carrying a target gene (Ad-Rip3 and Ad-Trim24 shRNA). RIP3 expression was examined in OA cartilage from human patients; Trim24, a negative regulator of RIP3, was identified by microarray and in silico analysis. Connectivity map (CMap) and in silico binding approaches were used to identify RIP3 inhibitors and to examine their direct regulation of RIP3 activation in OA pathogenesis. RESULTS: RIP3 expression was markedly higher in damaged cartilage from patients with OA than in undamaged cartilage. In the mouse model, adenoviral RIP3 overexpression accelerated cartilage disruption, whereas Rip3 depletion reduced DMM-induced OA pathogenesis. Additionally, TRIM24 knockdown upregulated RIP3 expression; its downregulation promoted OA pathogenesis in knee joint tissues. The CMap approach and in silico binding assay identified AZ-628 as a potent RIP3 inhibitor and demonstrated that it abolished RIP3-mediated OA pathogenesis by inhibiting RIP3 kinase activity. CONCLUSIONS: TRIM24-RIP3 axis perturbation promotes OA chronicity by activating RIP3 kinase, suggesting that the therapeutic manipulation of this pathway could provide new avenues for treating OA.
Assuntos
Proteínas de Transporte/metabolismo , Osteoartrite/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Necroptose/fisiologia , Proteínas Nucleares/metabolismo , Osteoartrite/patologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismoRESUMO
Metabolic rewiring has been recognized as an important feature to the progression of cancer. However, the essential components and functions of lipid metabolic networks in breast cancer progression are not fully understood. In this study, we investigated the roles of altered lipid metabolism in the malignant phenotype of breast cancer. Using a spheroid-induced epithelial-mesenchymal transition (EMT) model, we conducted multi-layered lipidomic and transcriptomic analysis to comprehensively describe the rewiring of the breast cancer lipidome during the malignant transformation. A tremendous homeostatic disturbance of various complex lipid species including ceramide, sphingomyelin, ether-linked phosphatidylcholines, and ether-linked phosphatidylethanolamine was found in the mesenchymal state of cancer cells. Noticeably, polyunsaturated fatty acids composition in spheroid cells was significantly decreased, accordingly with the gene expression patterns observed in the transcriptomic analysis of associated regulators. For instance, the up-regulation of SCD, ACOX3, and FADS1 and the down-regulation of PTPLB, PECR, and ELOVL2 were found among other lipid metabolic regulators. Significantly, the ratio of C22:6n3 (docosahexaenoic acid, DHA) to C22:5n3 was dramatically reduced in spheroid cells analogously to the down-regulation of ELOVL2. Following mechanistic study confirmed the up-regulation of SCD and down-regulation of PTPLB, PECR, ELOVL2, and ELOVL3 in the spheroid cells. Furthermore, the depletion of ELOVL2 induced metastatic characteristics in breast cancer cells via the SREBPs axis. A subsequent large-scale analysis using 51 breast cancer cell lines demonstrated the reduced expression of ELOVL2 in basal-like phenotypes. Breast cancer patients with low ELOVL2 expression exhibited poor prognoses (HR = 0.76, CI = 0.67-0.86). Collectively, ELOVL2 expression is associated with the malignant phenotypes and appear to be a novel prognostic biomarker in breast cancer. In conclusion, the present study demonstrates that there is a global alteration of the lipid composition during EMT and suggests the down-regulation of ELOVL2 induces lipid metabolism reprogramming in breast cancer and contributes to their malignant phenotypes.
RESUMO
BACKGROUND: Ginseng is believed to have antitumor activity. Autophagy is largely a prosurvival cellular process that is activated in response to cellular stressors, including cytotoxic chemotherapy; therefore, agents that inhibit autophagy can be used as chemosensitizers in cancer treatment. We examined the ability of Korean Red Ginseng extract (RGE) to prevent autophagic flux and to make hepatocellular carcinoma (HCC) cells become more sensitive to doxorubicin. METHODS: The cytotoxic effects of total RGE or its saponin fraction (RGS) on HCC cells were examined by the lactate dehydrogenase assay in a dose- or time-dependent manner. The effect of RGE or RGS on autophagy was measured by analyzing microtubule-associated protein 1A/1B-light chain (LC)3-II expression and LC3 puncta formation in HCC cells. Late-stage autophagy suppression was tested using tandem-labeled green fluorescent protein (GFP)-monomeric red fluorescent protein (mRFP)-LC3. RESULTS: RGE markedly increased the amount of LC3-II, but green and red puncta in tandem-labeled GFP-mRFP-LC3 remained colocalized over time, indicating that RGE inhibited autophagy at a late stage. Suppression of autophagy through knockdown of key ATG genes increased doxorubicin-induced cell death, suggesting that autophagy induced by doxorubicin has a protective function in HCC. Finally, RGE and RGS markedly sensitized HCC cells, (but not normal liver cells), to doxorubicin-induced cell death. CONCLUSION: Our data suggest that inhibition of late-stage autophagic flux by RGE is important for its potentiation of doxorubicin-induced cancer cell death. Therapy combining RGE with doxorubicin could serve as an effective strategy in the treatment of HCC.
RESUMO
S100A8/A9 has been suggested as a marker of disease activity in patients with adult-onset Still's disease (AOSD). We evaluated the clinical significance of S100A8/A9 as a biomarker and its pathogenic role in AOSD. Blood samples were collected prospectively from 20 AOSD patients and 20 healthy controls (HCs). Furthermore, skin and lymph node biopsy specimens of AOSD patients were investigated for S100A8/A9 expression levels via immunohistochemistry. Peripheral blood mononuclear cells (PBMCs) of active AOSD patients and HCs were investigated for S100A8/A9 cell signals. S100A8/A9, interleukin-1ß (IL-1ß), and tumor necrosis factor-α (TNF-α) levels in active AOSD patients were higher than those of HCs. S100A8/A9 levels correlated positively with IL-1ß, TNF-α and C-reactive protein. The inflammatory cells expressing S100A8/A9 were graded from one to three in skin and lymph node biopsies of AOSD patients. The grading for S100A8/A9 was more intense in the skin lesions with karyorrhexis, mucin deposition, and neutrophil infiltration. Like lipopolysaccharide (LPS), S100A8/A9 induced phosphorylation of p38 and c-Jun amino-terminal kinase (JNK) in PBMCs, suggesting that S100A8/A9 activates Toll-like receptor 4 signaling pathways. These findings suggest that S100A8/A9 may be involved in the inflammatory response with induction of proinflammatory cytokines and may serve as a clinicopathological marker for disease activity in AOSD.
Assuntos
Calgranulina A/sangue , Calgranulina B/sangue , Doença de Still de Início Tardio/sangue , Doença de Still de Início Tardio/patologia , Receptor 4 Toll-Like/metabolismo , Adulto , Artrite Reumatoide/sangue , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Proteína C-Reativa/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Feminino , Humanos , Interleucina-1beta/sangue , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Transdução de Sinais/fisiologia , Doença de Still de Início Tardio/imunologia , Doença de Still de Início Tardio/metabolismo , Fator de Necrose Tumoral alfa/sangueRESUMO
A nucleosomal protein, high mobility group box 1 (HMGB1) is known to be a late mediator of sepsis. Dabrafenib is a B-Raf inhibitor and initially used for the treatment of metastatic melanoma therapy. Inhibition of HMGB1 and renewal of vascular integrity is appearing as an engaging therapeutic strategy in the administration of severe sepsis or septic shock. Here, we examined the effects of dabrafenib (DAB) on the modulation of HMGB1-mediated septic responses. DAB inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses by enhancing the expressions of cell adhesion molecules (CAMs) in human endothelial cells. In addition, treatment with DAB inhibited the HMGB1 secretion by CLP and sepsis-related mortality and pulmonary injury. This study demonstrated that DAB could be alternative therapeutic options for sepsis or septic shock via the inhibition of the HMGB1 signaling pathway. [BMB Reports 2016; 49(4): 214-219].
Assuntos
Anti-Infecciosos Locais/farmacologia , Proteína HMGB1/metabolismo , Imidazóis/farmacologia , Inflamação/metabolismo , Oximas/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/metabolismo , Movimento Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Inflamação/patologia , Interleucina-6/biossíntese , Ligadura , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , Substâncias Protetoras/farmacologia , Punções , Fator de Necrose Tumoral alfa/biossínteseRESUMO
Gastrointestinal stromal tumors (GISTs) are mesenchymal tumors of the gastrointestinal tract that are most commonly found in the stomach. Although GISTs can spread to the liver and peritoneum, metastasis to the skeletal muscle is very rare and only four cases have previously been reported. These cases involved concurrent skeletal metastases of primary GISTs or liver metastases. Here, we report the first case of a distant recurrence in the brachialis muscle after complete remission of an extra-luminal gastric GIST following a wedge resection of the stomach, omental excision, and adjuvant imatinib therapy for one year. Ten months after therapy completion, the patient presented with swelling and tenderness in the left arm. Magnetic resonance imaging revealed a large mass in the brachialis muscle, which showed positivity for c-kit and CD34 upon pathologic examination. This is the first reported case of a solitary distant recurrence of a GIST in the muscle after complete remission had been achieved.
Assuntos
Tumores do Estroma Gastrointestinal/secundário , Neoplasias Musculares/secundário , Músculo Esquelético/patologia , Neoplasias Gástricas/patologia , Idoso de 80 Anos ou mais , Antígenos CD34/análise , Biomarcadores Tumorais/análise , Biópsia , Feminino , Tumores do Estroma Gastrointestinal/química , Tumores do Estroma Gastrointestinal/cirurgia , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Neoplasias Musculares/química , Neoplasias Musculares/tratamento farmacológico , Músculo Esquelético/química , Tomografia por Emissão de Pósitrons , Proteínas Proto-Oncogênicas c-kit/análise , Neoplasias Gástricas/química , Neoplasias Gástricas/cirurgia , Fatores de Tempo , Resultado do Tratamento , Carga Tumoral , Extremidade SuperiorRESUMO
Idiopathic pleuroparenchymal fibroelastosis (PPFE) is a rare, recently classified entity that consists of pleural and subjacent parenchymal fibrosis predominantly in the upper lungs. In an official American Thoracic Society/European Respiratory Society statement in 2013, this disease is introduced as a group of rare idiopathic interstitial pneumonias. We describe a case of a 76-year-old woman with cough and recurrent pneumothorax. She was admitted to our hospital with severe cough at first. High resolution computed tomography (HRCT) disclosed multifocal subpleural consolidations with reticular opacities in both lungs, primarily in the upper lobes, suggesting interstitial pneumonia. Rheumatoid lung was diagnosed initially through an elevated rheumatoid factor, HRCT and surgical biopsy at the right lower lobe. However, one month later, pneumothorax recurred. Surgical biopsy was performed at the right upper lobe at this time. The specimens revealed typical subpleural fibroelastosis. We report this as a first case of idiopathic PPFE in Korea after reviewing the symptoms, imaging and pathologic findings.
Assuntos
Granulomatose com Poliangiite/diagnóstico , Linfo-Histiocitose Hemofagocítica/diagnóstico , Adulto , Biópsia , Exame de Medula Óssea , Feminino , Glucocorticoides/uso terapêutico , Granulomatose com Poliangiite/tratamento farmacológico , Granulomatose com Poliangiite/imunologia , Humanos , Valor Preditivo dos Testes , Recidiva , Resultado do TratamentoRESUMO
BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is a demyelinating central nervous system disease caused by JC virus (JCV) reactivation in immunocompromised patients. The disease course of PML is often progressive, fatal and at present, there are few reports on successful treatment outcomes. CASE REPORT: A 45-year-old man with systemic sarcoidosis presented with rapidly progressive dementia and right hemiparesis. The patient was diagnosed with PML as confirmed via brain biopsy and JCV PCR. With a combination treatment of cidofovir and mirtazapine, there was significant improvement of neurological symptoms without measurable functional deficit. CONCLUSION: This case suggests that dual therapy with cidofovir and mirtazapine might be an effective treatment option in PML patients with sarcoidosis.
RESUMO
IgA nephropathy is the most common primary glomerulonephritis, but the pathogenesis of IgA nephropathy is still unclear. A 32-year-old woman was found to have IgA nephropathy and acute myeloid leukaemia. She was treated with allogenic bone marrow transplantation (BMT). After BMT, immunoflourescent staining of IgA and proteinuria disappeared. These findings suggest bone marrow cells are involved in the pathogenesis of IgA nephropathy. We herein report a case of complete remission of IgA nephropathy after BMT for acute myeloid leukaemia.