Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35462067

RESUMO

Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Neoplasias da Mama , Catepsina G , Proteínas Associadas aos Microtúbulos , Fator de Ativação de Plaquetas , 1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator de Ativação de Plaquetas/metabolismo
2.
Glycobiology ; 15(3): 271-80, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15483269

RESUMO

Sialyl-Lewis x (sLeX), one of the major selectin ligands, is expressed on T and B cells in a differentiation or activation stage-specific manner. We have demonstrated before that sLeX expression and core 2 beta 1,6-N-acetylglucosaminyltransferase (C2GnT) were simultaneously regulated during precursor B (pre-B) cell differentiation. Three C2GnT family genes, designated C2GnT-1, -2, and -3, were previously identified, but their roles have not been fully examined. In this study, we have investigated the roles of C2GnTs in the regulation of sLeX expression level during pre-B cell differentiation comparing with alpha 1,3fucosyltransferase-VII (FucT-VII) and alpha 2,3sialyltransferase-IV (ST3Gal-IV). Overexpression of not FucT-VII and ST3Gal-IV but C2GnT-1 blocked the down-regulation of sLeX expression by differentiation induction. Neither C2GnT-2 nor -3 but C2GnT-1 transcript was mainly expressed in B lineage cell lines and bone marrow-derived B lineage cells. Significant down-regulation of C2GnT-1 of the three C2GnTs was observed in KM3 cells during differentiation. The expression of C2GnT-1 correlated well to sLeX expression and differentiation stage. Furthermore, introduction of short interfering RNA against C2GnT-1 markedly reduced C2GnT-1 expression and resulted in down-regulation of sLeX expression. These results suggest that not the other glycosyltransferases but C2GnT-1 regulates sLeX expression level during differentiation of pre-B cells, providing the cells with substrate of sLeX structure biosynthesis.


Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , N-Acetilglucosaminiltransferases/metabolismo , Oligossacarídeos/metabolismo , Células-Tronco/metabolismo , Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/enzimologia , Medula Óssea/enzimologia , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Inativação Gênica , Humanos , N-Acetilglucosaminiltransferases/genética , Oligossacarídeos/genética , Antígeno Sialil Lewis X , Células-Tronco/citologia , Células-Tronco/enzimologia , Transfecção
3.
Cancer Detect Prev ; 26(2): 114-20, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12102145

RESUMO

We have found that an increase in the ganglioside GM3 is a prerequisite for the induction of terminal differentiation, cuhninating in death by apoptosis, of human colonic carcinoma cells in vitro. To evaluate the therapeutic effect of increasing GM3 in human colonic carcinoma cells, we examined whether treated cells lose their tumorigenic activity and whether this approach is effective against cancer cells growing in vivo. Cells of the human colonic carcinoma cell line HCT 116 not only differentiated but also lost their tumorigenic activity by an artificial increase in GM3. When HCT 116 tumors growing in nude mice were treated with a drug that increases GM3, an appreciable increase in GM3 and induction of apoptosis were clearly observed. The growth of treated tumors was greatly suppressed. These results suggest that the modulation of ganglioside expression to introduce gangliosides with biological activity into cancer cells could be a novel effective approach for cancer therapy.


Assuntos
Adenocarcinoma/tratamento farmacológico , Brefeldina A/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Gangliosídeo G(M3)/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular , Divisão Celular , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Células Tumorais Cultivadas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA