Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37630292

RESUMO

In the field of nuclear medicine, the ß+ -emitting 43Sc and ß- -emitting 47Sc are promising candidates in cancer diagnosis and targeted radionuclide therapy (TRT) due to their favorable decay schema and shared pharmacokinetics as a true theranostic pair. Additionally, scandium is a group-3 transition metal (like 177Lu) and exhibits affinity for DOTA-based chelators, which have been studied in depth, making the barrier to implementation lower for 43/47Sc than for other proposed true theranostics. Before 43/47Sc can see widespread pre-clinical evaluation, however, an accessible production methodology must be established and each isotope's radiolabeling and animal imaging capabilities studied with a widely utilized tracer. As such, a simple means of converting an 18 MeV biomedical cyclotron to support solid targets and produce 43Sc via the 42Ca(d,n)43Sc reaction has been devised, exhibiting reasonable yields. The NatTi(γ,p)47Sc reaction is also investigated along with the successful implementation of chemical separation and purification methods for 43/47Sc. The conjugation of 43/47Sc with PSMA-617 at specific activities of up to 8.94 MBq/nmol and the subsequent imaging of LNCaP-ENZaR tumor xenografts in mouse models with both 43/47Sc-PSMA-617 are also presented.


Assuntos
Medicina Nuclear , Neoplasias da Próstata , Humanos , Animais , Camundongos , Masculino , Escândio , Medicina de Precisão , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioisótopos/uso terapêutico
2.
Phys Med Biol ; 66(3): 035002, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496267

RESUMO

In recent years the use of beta-emitting radiopharmaceuticals for cancer therapy has expanded rapidly following development of therapeutics for neuroendocrine tumors, prostate cancer, and other oncologic malignancies. One emerging beta-emitting radioisotope of interest for therapy is 67Cu (t1/2: 2.6 d) due to its chemical equivalency with the widely-established positron-emitting isotope 64Cu (t1/2: 12.7 h). In this work we evaluate both the imaging and dosimetric characteristics of 67Cu, as well as producing the first report of SPECT/CT imaging using 67Cu. To this end, 67Cu was produced by photon-induced reactions on isotopically-enriched 68Zn at the Low-Energy Accelerator Facility (LEAF) of Argonne National Laboratory, followed by bulk separation of metallic 68Zn by sublimation and radiochemical purification by column chromatography. Gamma spectrometry was performed by efficiency-calibrated high-purity germanium (HPGe) analysis to verify absolute activity calibration and establish radionuclidic purity. Absolute activity measurements corroborated manufacturer-recommended dose-calibrator settings and no radionuclidic impurities were observed. Using the Clinical Trials Network anthropomorphic chest phantom, SPECT/CT images were acquired. Medium energy (ME) SPECT collimation was found to provide the best image quality from the primary 185 keV gamma emission of 67Cu. Reconstructed images of 67Cu were similar in quality to images acquired using 177Lu. Recovery coefficients were calculated and compared against quantitative images of 99mTc, 177Lu, and 64Cu within the same anthropomorphic chest phantom. Production and clinical imaging of 67Cu appears feasible, and future studies investigating the therapeutic efficacy of 67Cu-based radiopharmaceuticals are warranted.


Assuntos
Radioisótopos de Cobre , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Calibragem , Radioisótopos de Cobre/química , Radioisótopos de Cobre/isolamento & purificação , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Fótons , Radioquímica , Radiometria
3.
Rev Sci Instrum ; 88(3): 033302, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372426

RESUMO

A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA