Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1249879, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239221

RESUMO

Introduction: Plants are sessile organisms that maximize reproductive success by adapting to their environment. One of the key steps in the reproductive phase of angiosperms is flower development, requiring the perception of multiple endogenous and exogenous signals integrated via a complex regulatory network. Key floral regulators, including the main transcription factor of the photoperiodic pathway (CONSTANS, CO) and the central floral pathway integrator (FLOWERING LOCUS T, FT), are known in many species. Methods and results: We identified several CO-like (COL) proteins in tobacco (Nicotiana tabacum). The NtCOL2a/b proteins in the day-neutral plant N. tabacum were most closely related to Arabidopsis CO. We characterized the diurnal expression profiles of corresponding genes in leaves under short-day (SD) and long-day (LD) conditions and confirmed their expression in phloem companion cells. Furthermore, we analyzed the orthologs of NtCOL2a/b in the maternal LD ancestor (N. sylvestris) and paternal, facultative SD ancestor (N. tomentosiformis) of N. tabacum and found that they were expressed in the same diurnal manner. NtCOL2a/b overexpression or knock-out using the CRISPR/Cas9 system did not support a substantial role for the CO homologs in the control of floral transition in N. tabacum. However, NsCOL2 overexpression induced flowering in N. sylvestris under typically non-inductive SD conditions, correlating with the upregulation of the endogenous NsFTd gene. Discussion: Our results suggest that NsFTd is transcriptionally regulated by NsCOL2 and that this COL2-dependent photoperiodic floral induction seems to be lost in N. tabacum, providing insight into the diverse genetics of photoperiod-dependent flowering in different Nicotiana species.

2.
Aging (Albany NY) ; 14(7): 2989-3029, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396341

RESUMO

Proteostasis reflects the well-balanced synthesis, trafficking and degradation of cellular proteins. This is a fundamental aspect of the dynamic cellular proteome, which integrates multiple signaling pathways, but it becomes increasingly error-prone during aging. Phosphatidylethanolamine-binding proteins (PEBPs) are highly conserved regulators of signaling networks and could therefore affect aging-related processes. To test this hypothesis, we expressed PEPBs in a heterologous context to determine their ectopic activity. We found that heterologous expression of the tobacco (Nicotiana tabacum) PEBP NtFT4 in Drosophila melanogaster significantly increased the lifespan of adult flies and reduced age-related locomotor decline. Similarly, overexpression of the Drosophila ortholog CG7054 increased longevity, whereas its suppression by RNA interference had the opposite effect. In tobacco, NtFT4 acts as a floral regulator by integrating environmental and intrinsic stimuli to promote the transition to reproductive growth. In Drosophila, NtFT4 engaged distinct targets related to proteostasis, such as HSP26. In older flies, it also prolonged Hsp26 gene expression, which promotes longevity by maintaining protein integrity. In NtFT4-transgenic flies, we identified deregulated genes encoding proteases that may contribute to proteome stability at equilibrium. Our results demonstrate that the expression of NtFT4 influences multiple aspects of the proteome maintenance system via both physical interactions and transcriptional regulation, potentially explaining the aging-related phenotypes we observed.


Assuntos
Proteínas de Drosophila , Longevidade , Envelhecimento/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Longevidade/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteoma/metabolismo , Proteostase/genética , Nicotiana
4.
Int J Biol Macromol ; 193(Pt B): 1332-1339, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742849

RESUMO

Forisomes are giant polyprotein complexes that undergo reversible conformational rearrangements from a spindle-like to a plug-like state in response to Ca2+ or changes in pH. They act as valves in the plant vasculature, and reproduce this function in vitro to regulate flow in microfluidic capillaries controlled by electro-titration. Heterologous expression in yeast or plants allows the large-scale production of tailor-made artificial forisomes for technical applications. Here we investigated the unexpected disintegration of artificial forisomes in response to Ca2+ following the deletion of the M1 motif in the MtSEO-F1 protein or the replacement of all four conserved cysteine residues therein. This phenomenon could be mimicked in wild-type forisomes under reducing conditions by adding a thiol alkylating agent. We propose a model in which reversible changes in forisome structure depend on cysteine residues with ambiguous redox states, allowing the formation of intermolecular disulfide bridges (confirmed by mass spectrometry) as well as noncovalent thiol interactions to connect forisome substructures in the dispersed state. This is facilitated by the projection of the M1 motif from the MtSEO-F1 protein as part of an extended loop. Our findings support the rational engineering of disintegrating forisomes to control the release of peptides or enzymes in microfluidic systems.


Assuntos
Cisteína/química , Proteínas de Plantas/química , Plantas/química , Alquilantes/química , Dissulfetos/química , Oxirredução , Compostos de Sulfidrila/química
5.
Biotechnol Bioeng ; 118(10): 3770-3786, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34110007

RESUMO

The production of biopharmaceutical proteins in mammalian cells by transient expression or stable transformation requires robust and viable cells. Cell line engineering must therefore balance improved cell growth and viability with high productivity. We tested the ability of nonmammalian phosphatidylethanolamine-binding proteins to enhance cell proliferation in monolayers and suspension cultures. The tobacco protein NtFT4 improved the proliferation of multiple human cell lines. Viable cell density is usually impaired by efficient transfection, but we found that the number of HEK-293TNtFT4 cells at the peak of protein expression was twice that of standard HEK-293T cells, and the antibody yield increased by approximately one-third. Improved growth and viability were observed in different cell lines, in different culture media, and also after transient transfection, suggesting the beneficial trait is consistent and transferable. Additional modifications could boost the productivity of high-density HEK-293TNtFT4 cells even further as we showed for a fluorescent marker protein and recombinant antibody expressed in monolayer cultures. The HEK-293TNtFT4 cell line provides a new human model platform that increases cell proliferation, also achieving a fundamental improvement in recombinant protein expression.


Assuntos
Técnicas de Cultura de Células , Nicotiana/genética , Proteína de Ligação a Fosfatidiletanolamina , Proteínas de Plantas , Sobrevivência Celular , Células HEK293 , Humanos , Células MCF-7 , Proteína de Ligação a Fosfatidiletanolamina/biossíntese , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
6.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228234

RESUMO

Potato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which is a tuber necrosis caused by tobacco rattle virus (TRV). The appearance of corky ringspot symptoms on tubers prior to commercialization results in ≈ 45% of the tubers being downgraded in quality and value, while ≈ 55% are declared unsaleable. To improve current disease management practices, we have developed simple diagnostic methods for the reliable detection of TRV without RNA purification, involving minimalized sample handling (mini), subsequent improved colorimetric loop-mediated isothermal amplification (LAMP), and final verification by lateral-flow dipstick (LFD) analysis. Having optimized the mini-LAMP-LFD approach for the sensitive and specific detection of TRV, we confirmed the reliability and robustness of this approach by the simultaneous detection of TRV and other harmful viruses in duplex LAMP reactions. Therefore, our new approach offers breeders, producers, and farmers an inexpensive and efficient new platform for disease management in potato breeding and cultivation.


Assuntos
Técnicas de Diagnóstico Molecular/métodos , Tipagem Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Doenças das Plantas/virologia , Tubérculos/virologia , RNA Viral/genética , Solanum tuberosum/virologia , Colorimetria/instrumentação , Colorimetria/métodos , Humanos , Técnicas de Diagnóstico Molecular/instrumentação , Tipagem Molecular/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Vírus de Plantas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Front Plant Sci ; 10: 1666, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998348

RESUMO

The FLOWERING LOCUS T (FT)-like gene family encodes key regulators of flower induction that affect the timing of reproduction in many angiosperm species. Agricultural research has therefore focused on such genes to improve the success of breeding programs and enhance agronomic traits. We recently identified a novel FT-like gene (NtFT5) that encodes a day-neutral floral activator in the model tobacco crop Nicotiana tabacum. However, further characterization is necessary to determine its value as a target for breeding programs. We therefore investigated the function of NtFT5 by expression analysis and mutagenesis. Expression analysis revealed that NtFT5 is transcribed in phloem companion cells, as is typical for FT-like genes. However, high levels of NtFT5 mRNA accumulated not only in the leaves but also in the stem. Loss-of-function mutants (generated using CRISPR/Cas9) were unable to switch to reproductive growth under long-day conditions, indicating that NtFT5 is an indispensable major floral activator during long-days. Backcrossing was achieved by grafting the mutant scions onto wild-type rootstock, allowing the restoration of flowering and pollination by a wild-type donor. The resulting heterozygous Ntft5- /NtFT5+ plants flowered with a mean delay of only ~2 days, demonstrating that one functional allele is sufficient for near-normal reproductive timing. However, this minor extension of the vegetative growth phase also conferred beneficial agronomic traits, including a >10% increase in vegetative leaf biomass on the main shoot and the production of more seeds. The agronomic benefits of the heterozygous plants persisted under various abiotic stress conditions, confirming that NtFT5 is a promising target for crop improvement to address the effects of climate change.

8.
Plant J ; 96(2): 329-342, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030859

RESUMO

Photoperiod is an important external stimulus governing the precise timing of the floral transition in plants. Members of the FLOWERING LOCUS T (FT)-like clade of phosphatidylethanolamine-binding proteins induce this developmental process in numerous species by forming regulatory protein complexes with FD-like bZIP transcription factors. We identified several thus far unknown FT-like and FD-like genes in the genus Nicotiana and found that, even in the day-neutral species Nicotiana tabacum, floral initiation requires the photoperiod-dependent expression of several FT-like genes. Furthermore, floral promotion under long-day (LD) and short-day (SD) conditions is mediated by an FT-like protein (NtFT5) that originates from the genome of the paternal, facultative SD ancestor Nicotiana tomentosiformis. In contrast, its ortholog of the maternal LD ancestor Nicotiana sylvestris is not present in the genome of N. tabacum cv. SR1. Expression profiling in N. tabacum and its ancestors confirmed the relevance of these FT and FD orthologs in the context of polyploidization. We also found that floral inhibition by tobacco FT-like proteins is not restricted to SD conditions, highlighting the coincident expression of tobacco FT-like genes encoding floral activators and floral inhibitors. Multicolor bimolecular fluorescence complementation analysis revealed the preferential formation of FT/FD complexes that promote rather than inhibit flowering, which in concert with the regulation of NtFT and NtFD expression could explain how floral promotion overcomes floral repression during the floral transition in tobacco.


Assuntos
Flores/genética , Nicotiana/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fotoperíodo , Flores/fisiologia , Flores/efeitos da radiação , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/fisiologia , Nicotiana/efeitos da radiação
9.
Plant Mol Biol ; 86(1-2): 51-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928491

RESUMO

P-proteins are structural phloem proteins discussed to be involved in the rapid sealing of injured sieve elements. P-proteins are found in all dicotyledonous and some monocotyledonous plants, but additional crystalloid P-proteins, known as forisomes, have evolved solely in the Fabaceae. Both types are encoded by members of the sieve element occlusion (SEO) gene family, which comprises seven phylogenetic subgroups. The Fabaceae-specific subgroup 1 contains genes encoding forisome subunits in e.g. Medicago truncatula, Vicia faba, Dipteryx panamensis and Canavalia gladiata whereas basal subgroup 5 encodes P-proteins in Nicotiana tabacum (tobacco) and Arabidopsis thaliana. The function of remaining subgroups is still unknown. We chose Glycine max (soybean) as a model to investigate SEO proteins representing different subgroups in one species. We isolated native P-proteins to determine the SEO protein composition and analyzed the expression pattern, localization and structure of the G. max SEO proteins representing five of the subgroups. We found that subgroup 1 GmSEO genes encode forisome subunits, a member of subgroup 5 encodes a non-forisome P-protein and subgroup 2 GmSEO genes encode the components of forisome tails, which are present in a restricted selection of Fabaceaen species. We therefore present the first molecular characterization of a Fabaceae non-forisome P-protein and the first evidence that forisome tails are encoded by a phylogenetically-distinct branch of the SEO gene family.


Assuntos
Glycine max/genética , Proteínas de Plantas/genética , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo , Transporte Proteico , Glycine max/metabolismo , Nicotiana/genética
10.
PLoS One ; 9(5): e96831, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24821306

RESUMO

BACKGROUND: Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. METHODOLOGY/PRINCIPAL FINDINGS: We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. CONCLUSIONS/SIGNIFICANCE: We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants.


Assuntos
Microinjeções/métodos , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Protoplastos/metabolismo , Óleo de Palmeira , Plantas Geneticamente Modificadas/citologia , Transfecção/métodos , Transformação Genética/genética
11.
Gene ; 538(2): 251-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487090

RESUMO

Nickel is an essential micronutrient due to its involvement in many enzymatic reactions as a cofactor. However, excess of this element is toxic to biological systems. Here, we constructed a cDNA library from Beta maritima and screened it in the yeast system to identify genes that confer resistance to toxic levels of nickel. A cDNA clone (NIC6), which encodes for a putative membrane protein with unknown function, was found to help yeast cells to tolerate toxic levels of nickel. A GFP fused form of Nic6 protein was localized to multivesicular structures in tobacco epidermal cells. Thus, our results suggest a possible role of Nic6 in nickel and intracellular ion homeostasis.


Assuntos
Beta vulgaris/genética , Beta vulgaris/metabolismo , DNA de Plantas/genética , Níquel/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Beta vulgaris/efeitos dos fármacos , Clonagem Molecular , DNA Complementar/genética , Biblioteca Gênica , Genes de Plantas , Inativação Metabólica/genética , Dados de Sequência Molecular , Níquel/toxicidade , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismo
12.
Front Plant Sci ; 4: 225, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840197

RESUMO

Structural phloem proteins (P-proteins) are characteristic components of the sieve elements in all dicotyledonous and many monocotyledonous angiosperms. Tobacco P-proteins were recently confirmed to be encoded by the widespread sieve element occlusion (SEO) gene family, and tobacco SEO proteins were shown to be directly involved in sieve tube sealing thus preventing the loss of photosynthate. Analysis of the two Arabidopsis SEO proteins (AtSEOa and AtSEOb) indicated that the corresponding P-protein subunits do not act in a redundant manner. However, there are still pending questions regarding the interaction properties and specific functions of AtSEOa and AtSEOb as well as the general function of structural P-proteins in Arabidopsis. In this study, we characterized the Arabidopsis P-proteins in more detail. We used in planta bimolecular fluorescence complementation assays to confirm the predicted heteromeric interactions between AtSEOa and AtSEOb. Arabidopsis mutants depleted for one or both AtSEO proteins lacked the typical P-protein structures normally found in sieve elements, underlining the identity of AtSEO proteins as P-proteins and furthermore providing the means to determine the role of Arabidopsis P-proteins in sieve tube sealing. We therefore developed an assay based on phloem exudation. Mutants with reduced AtSEO expression levels lost twice as much photosynthate following injury as comparable wild-type plants, confirming that Arabidopsis P-proteins are indeed involved in sieve tube sealing.

13.
Plant Signal Behav ; 7(12): 1724-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23072990

RESUMO

Angiosperms transport their photoassimilates through sieve tubes, which comprise longitudinally-connected sieve elements. In dicots and also some monocots, the sieve elements contain parietal structural proteins known as phloem proteins or P-proteins. Following injury, P proteins disperse and accumulate as viscous plugs at the sieve plates to prevent the loss of valuable transport sugars. Tobacco (Nicotiana tabacum) P-proteins are multimeric complexes comprising subunits encoded by members of the SEO (sieve element occlusion) gene family. The existence of multiple subunits suggests that P-protein assembly involves interactions between SEO proteins, but this process is largely uncharacterized and it is unclear whether the different subunits perform unique roles or are redundant. We therefore extended our analysis of the tobacco P-proteins NtSEO1 and NtSEO2 to investigate potential interactions between them, and found that both proteins can form homomeric and heteromeric complexes in planta.


Assuntos
Nicotiana/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Ligação Proteica
14.
Biomacromolecules ; 13(10): 3076-86, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-22963540

RESUMO

Forisomes are protein polymers found in leguminous plants that have the remarkable ability to undergo reversible "muscle-like" contractions in the presence of divalent cations and in extreme pH environments. To gain insight into the molecular basis of forisome structure and assembly, we used confocal laser scanning microscopy to monitor the assembly of fluorescence-labeled artificial forisomes in real time, revealing two distinct assembly processes involving either fiber elongation or fiber alignment. We also used scanning and transmission electron microscopy and X-ray diffraction to investigate the ultrastructure of forisomes, finding that individual fibers are arranged into compact fibril bundles that disentangle with minimal residual order in the presence of calcium ions. To demonstrate the potential applications of artificial forisomes, we created hybrid protein bodies from forisome subunits fused to the B-domain of staphylococcal protein A. This allowed the functionalization of the artificial forisomes with antibodies that were then used to target forisomes to specific regions on a substrate, providing a straightforward approach to develop forisome-based technical devices with precise configurations. The functional contractile properties of forisomes are also better preserved when they are immobilized via affinity reagents rather than by direct contact to the substrate. Artificial forisomes produced in plants and yeast therefore provide an ideal model for the investigation of forisome structure and assembly and for the design and testing of tailored artificial forisomes for technical applications.


Assuntos
Proteínas de Plantas/química , Agrobacterium tumefaciens/química , Células Epidérmicas , Epiderme/química , Epiderme/metabolismo , Medicago truncatula/química , Membranas Artificiais , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Proteínas de Plantas/biossíntese , Nicotiana/química , Nicotiana/citologia
15.
Plant J ; 72(6): 908-21, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22889438

RESUMO

Flowering is an important agronomic trait that often depends on the integration of photoperiod, vernalization, gibberellin and/or autonomous signaling pathways by regulatory proteins such as FLOWERING LOCUS T (FT), a member of the phosphatidylethanolamine-binding protein (PEBP) family. Six PEBP family proteins control flowering in the model plant Arabidopsis thaliana, and their regulatory functions are well established, but variation in the number and structural diversity of PEBPs in different species means their precise functions must be determined on a case-by-case basis. We isolated four novel FT-like genes from Nicotiana tabacum (tobacco), and determined their expression profiles in wild-type plants and their overexpression phenotypes in transgenic plants. We found that all four genes were expressed in leaves under short-day conditions, and at least NtFT3 expression was restricted to phloem companion cells. We also found that the NtFT1, NtFT2 and NtFT3 proteins are floral inhibitors (atypical for FT-like proteins), whereas only NtFT4 is a floral inducer. We were unable to detect the expression of these genes under long-day conditions, suggesting that all four tobacco FT-like proteins may control flowering in response to short days. Phylogenetic analysis of PEBP family proteins and their functions in different solanaceous species confirmed that gene duplication and divergence within the FT-like clade has led to the evolution of antagonistic regulators that may help to fine-tune floral initiation in response to environmental cues.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Nicotiana/crescimento & desenvolvimento , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Sequência de Bases , Flores/genética , Flores/fisiologia , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Luz , Dados de Sequência Molecular , Fenótipo , Floema/genética , Floema/crescimento & desenvolvimento , Floema/fisiologia , Floema/efeitos da radiação , Proteína de Ligação a Fosfatidiletanolamina/genética , Fotoperíodo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Transdução de Sinais , Fatores de Tempo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/efeitos da radiação
16.
Proc Natl Acad Sci U S A ; 109(28): E1980-9, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733783

RESUMO

The sieve element occlusion (SEO) gene family originally was delimited to genes encoding structural components of forisomes, which are specialized crystalloid phloem proteins found solely in the Fabaceae. More recently, SEO genes discovered in various non-Fabaceae plants were proposed to encode the common phloem proteins (P-proteins) that plug sieve plates after wounding. We carried out a comprehensive characterization of two tobacco (Nicotiana tabacum) SEO genes (NtSEO). Reporter genes controlled by the NtSEO promoters were expressed specifically in immature sieve elements, and GFP-SEO fusion proteins formed parietal agglomerates in intact sieve elements as well as sieve plate plugs after wounding. NtSEO proteins with and without fluorescent protein tags formed agglomerates similar in structure to native P-protein bodies when transiently coexpressed in Nicotiana benthamiana, and the analysis of these protein complexes by electron microscopy revealed ultrastructural features resembling those of native P-proteins. NtSEO-RNA interference lines were essentially devoid of P-protein structures and lost photoassimilates more rapidly after injury than control plants, thus confirming the role of P-proteins in sieve tube sealing. We therefore provide direct evidence that SEO genes in tobacco encode P-protein subunits that affect translocation. We also found that peptides recently identified in fascicular phloem P-protein plugs from squash (Cucurbita maxima) represent cucurbit members of the SEO family. Our results therefore suggest a common evolutionary origin for P-proteins found in the sieve elements of all dicotyledonous plants and demonstrate the exceptional status of extrafascicular P-proteins in cucurbits.


Assuntos
Cucurbita/genética , Fabaceae/genética , Nicotiana/genética , Floema/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Evolução Molecular , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Luz , Microscopia Confocal/métodos , Microscopia Eletrônica/métodos , Dados de Sequência Molecular , Floema/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA
17.
Appl Microbiol Biotechnol ; 89(6): 1675-82, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21286708

RESUMO

Forisomes are remarkable protein bodies found exclusively in the phloem of the Fabaceae. When the phloem is wounded, forisomes are converted from a condensed to a dispersed state in an ATP-independent reaction triggered by Ca(2+), thereby plugging the sieve tubes and preventing the loss of photoassimilates. Potentially, forisomes are ideal biomaterials for technical devices because the conformational changes can be replicated in vitro and are fully reversible over a large number of cycles. However, the development of technical devices based on forisomes has been hampered by the laborious and time-consuming process of purifying native forisomes from plants. More recently, the problem has been overcome by the production of recombinant artificial forisomes. This is a milestone in the development of forisome-based devices, not only because large quantities of homogeneous forisomes can be produced on demand, but also because their properties can be tailored for particular applications. In this review, we discuss the physical and molecular properties of native and artificial forisomes, focusing on their current applications in technical devices and potential developments in the future.


Assuntos
Biotecnologia/métodos , Fabaceae/química , Complexos Multiproteicos/metabolismo , Floema/química , Proteínas de Plantas/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Complexos Multiproteicos/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
18.
Appl Microbiol Biotechnol ; 88(3): 689-98, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20665019

RESUMO

Forisomes are mechanoproteins that undergo ATP-independent contraction-expansion cycles triggered by divalent cations, pH changes, and electrical stimuli. Although native forisomes from Medicago truncatula comprise a number of subunits encoded by separate genes, here we show that at least two of those subunits (MtSEO1 and MtSEO4) can assemble into homomeric forisome bodies that are functionally similar to their native, multimeric counterparts. We expressed these subunits in plants and yeast, resulting in the purification of large quantities of artificial forisomes with unique characteristics depending on the expression platform. These artificial forisomes were able to contract and expand in vitro like native forisomes and could respond to electrical stimulation when immobilized between interdigital transducer electrodes. These results indicate that recombinant artificial forisomes with specific characteristics can be prepared in large amounts and used as components of microscale and nanoscale devices.


Assuntos
Fusão Gênica Artificial , Materiais Biocompatíveis/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Contráteis/metabolismo , Vetores Genéticos/isolamento & purificação , Vetores Genéticos/metabolismo , Medicago truncatula/metabolismo , Complexos Multiproteicos/genética , Proteínas de Plantas/genética , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Nicotiana/metabolismo
19.
Plant Mol Biol ; 65(3): 285-94, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17694275

RESUMO

Forisomes are protein aggregates found uniquely in the sieve elements of Fabaceaen plants. Upon wounding they undergo a reversible, calcium-dependent conformational switch which enables them to act as cellular stopcocks. Forisomes begin to form in young sieve elements at an early stage of metaphloem differentiation. Genes encoding forisome components could therefore be useful as markers of early sieve element development. Here we present a comprehensive analysis of the developmental expression profile of for1, which encodes such a forisome component. The for1 gene is highly conserved among Fabaceaen species and appears to be unique to this phylogenetic lineage since no orthologous genes have been found in other plants, including Arabidopsis and rice. Even so, transgenic tobacco plants expressing reporter genes under the control of the for1 promoter display reporter activity exclusively in immature sieve elements. This suggests that the regulation of sieve element development is highly conserved even in plants where mature forisomes have not been detected. The promoter system could therefore provide a powerful tool for the detailed analysis of differentiation in metaphloem sieve elements in an unexpectedly broad range of plant species.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Floema/genética , Proteínas de Plantas/genética , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Imunofluorescência , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Confocal , Floema/crescimento & desenvolvimento , Floema/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Nat Mater ; 2(9): 600-3, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12942070

RESUMO

Emerging technologies are creating increasing interest in smart materials that may serve as actuators in micro- and nanodevices. Mechanically active polymers currently studied include a variety of materials. ATP-driven motor proteins, the actuators of living cells, possess promising characteristics, but their dependence on strictly defined chemical environments can be disadvantagous. Natural proteins that deform reversibly by entropic mechanisms might serve as models for artificial contractile polypeptides with useful functionality, but they are rare. Protein bodies from sieve elements of higher plants provide a novel example. sieve elements form microfluidics systems for pressure-driven transport of photo-assimilates throughout the plant. Unique protein bodies in the sieve elements of legumes act as cellular stopcocks, by undergoing a Ca2+-dependent conformational switch in which they plug the sieve element. In living cells, this reaction is probably controlled by Ca2+-transporters in the cell membrane. Here we report the rapid, reversible, anisotropic and ATP-independent contractility in these protein bodies in vitro. Considering the unique biological function of the legume 'crystalloid' protein bodies and their contractile properties, we suggest to give them the distinctive name forisome ('gate-body'; from the Latin foris, the wing of a gate).


Assuntos
Proteínas Motores Moleculares/química , Nanotecnologia/métodos , Proteínas de Plantas/química , Proteínas de Plantas/efeitos da radiação , Vicia faba/química , Trifosfato de Adenosina/química , Materiais Biomiméticos/química , Biomimética/métodos , Elasticidade , Campos Eletromagnéticos , Teste de Materiais/métodos , Movimento (Física) , Conformação Proteica , Estresse Mecânico , Vicia faba/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA