Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Stem Cells Transl Med ; 11(1): 2-13, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35641163

RESUMO

The number of mesenchymal stromal/stem cell (MSC) therapeutics and types of clinical applications have greatly diversified during the past decade, including rapid growth of poorly regulated "Stem Cell Clinics" offering diverse "Unproven Stem Cell Interventions." This product diversification necessitates a critical evaluation of the reliance on the 2006 MSC minimal criteria to not only define MSC identity but characterize MSC suitability for intravascular administration. While high-quality MSC therapeutics have been safely administered intravascularly in well-controlled clinical trials, repeated case reports of mild-to-more-severe adverse events have been reported. These are most commonly related to thromboembolic complications upon infusion of highly procoagulant tissue factor (TF/CD142)-expressing MSC products. As TF/CD142 expression varies widely depending on the source and manufacturing process of the MSC product, additional clinical cell product characterization and guidelines are needed to ensure the safe use of MSC products. To minimize risk to patients receiving MSC therapy, we here propose to supplement the minimal criteria used for characterization of MSCs, to include criteria that assess the suitability of MSC products for intravascular use. If cell products are intended for intravascular delivery, which is true for half of all clinical applications involving MSCs, the effects of MSC on coagulation and hemocompatibility should be assessed and expression of TF/CD142 should be included as a phenotypic safety marker. This adjunct criterion will ensure both the identity of the MSCs as well as the safety of the MSCs has been vetted prior to intravascular delivery of MSC products.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Coagulação Sanguínea , Humanos , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Tromboplastina/metabolismo
2.
Am J Vet Res ; 83(4): 291-297, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35175935

RESUMO

The concept of a one-health approach in regenerative medicine has gained tremendous momentum in the scientific and public communities in recent years. Knowledge derived from this approach informs innovative biomedical research, clinical trials, and practice. The ultimate goal is to translate regenerative strategies for curing diseases and improving the quality of life in animals and people. Building and fostering strong and enthusiastic interdisciplinary and transdisciplinary collaboration between teams with a wide range of expertise and backgrounds is the cornerstone to the success of the one-health approach and translational sciences. The veterinarian's role in conducting clinical trials in client-owned animals with naturally occurring diseases is critical and unique as it may potentially inform human clinical trials. The veterinary regenerative medicine and surgery field is on a steep trajectory of discoveries and innovations. This manuscript focuses on oromaxillofacial-region regeneration to exemplify how the concept of interdisciplinary and transdisciplinary collaboration and the one-health approach influenced the authors' work experience at the University of California-Davis.


Assuntos
Saúde Única , Medicina Regenerativa , Animais , Humanos , Qualidade de Vida
3.
J Biomed Mater Res B Appl Biomater ; 110(7): 1615-1623, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099112

RESUMO

A combination product of human mesenchymal stem/stromal cells (MSCs) embedded in an extracellular matrix scaffold and preconditioned with hypoxia and the beta-adrenergic receptor antagonist, timolol, combined with sustained timolol application post implantation, has shown promising results for improving wound healing in a diabetic mouse model. In the present study, we extend those findings to the more translatable large animal porcine wound model and show that the combined treatment promotes wound reepithelialization in these excisional wounds by 40.2% and increases the CD31 immunostaining marker of angiogenesis compared with the matrix control, while maintaining an accumulated timolol plasma concentration below the clinically safe level of 0.3 ng/mL after the 15-day course of topical application. Human GAPDH was not elevated in the day 15 wounds treated with MSC-containing device relative to wounds treated with matrix alone, indicating that the xenografted human MSCs in the treatment do not persist in these immune-competent animals after 15 days. The work demonstrates the efficacy and safety of the combined treatment for improving healing in the clinically relevant porcine wound model.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Modelos Animais de Doenças , Matriz Extracelular , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Suínos , Timolol/farmacologia , Cicatrização
4.
Laryngoscope ; 132(3): 523-527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33988246

RESUMO

OBJECTIVES/HYPOTHESIS: To evaluate the safety and potential efficacy of autologous muscle-derived cells (AMDCs) for the treatment of swallowing impairment following treatment for oropharynx cancer. STUDY DESIGN: Prospective, phase I, open label, clinical trial. METHODS: Oropharynx cancer survivors disease free ≥2 years post chemoradiation were recruited. All patients had swallowing impairment but were not feeding tube dependent (Functional Oral Intake Scale [FOIS] ≥ 5). Muscle tissue (50-250 mg) was harvested from the vastus lateralis and 150 × 106 AMDCs were prepared (Cook MyoSite Inc., Pittsburgh, PA). The cells were injected into four sites throughout the intrinsic tongue musculature. Participants were followed for 24 months. The primary outcome measure was safety. Secondary endpoints included objective measures on swallowing fluoroscopy, oral and pharyngeal pressure, and changes in patient-reported outcomes. RESULTS: Ten individuals were enrolled. 100% (10/10) were male. The mean age of the cohort was 65 (±8.87) years. No serious adverse event occurred. Mean tongue pressure increased significantly from 26.3 (±11.1) to 31.8 (±9.5) kPa (P = .017). The mean penetration-aspiration scale did not significantly change from 5.6 (±2.1) to 6.8 (±1.8), and the mean FOIS did not significantly change from 5.4 (±0.5) to 4.6 (±0.7). The incidence of pneumonia was 30% (3/10) and only 10% (1/10) experienced deterioration in swallowing function throughout 2 years of follow-up. The mean eating assessment tool (EAT-10) did not significantly change from 24.1 (±5.57) to 21.3 (±6.3) (P = .12). CONCLUSION: Results of this phase I clinical trial demonstrate that injection of 150 × 106 AMDCs into the tongue is safe and may improve tongue strength, which is durable at 2 years. A blinded placebo-controlled trial is warranted. LEVEL OF EVIDENCE: 3 Laryngoscope, 132:523-527, 2022.


Assuntos
Transplante de Células/métodos , Transtornos de Deglutição/terapia , Neoplasias de Cabeça e Pescoço/complicações , Células Musculares/transplante , Idoso , Transtornos de Deglutição/etiologia , Fluoroscopia/métodos , Humanos , Masculino , Manometria , Estudos Prospectivos
5.
Ann Transl Med ; 9(15): 1273, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532410

RESUMO

BACKGROUND: Diabetic retinopathy is a retinal vasculopathy involving all three retinal capillary plexus layers. Since human CD34+ bone marrow stem cells (BMSCs) have the potential to promote revascularization of ischemic tissue, this study tests the hypothesis that intravitreal injection of human CD34+ BMSCs can have protective effects on all layers of the retinal vasculature in eyes with diabetic retinopathy. METHODS: Streptozotocin (STZ)-induced diabetic mice were injected intravitreally with 50,000 human CD34+ BMSCs or phosphate-buffered saline (PBS) into the right eye. Systemic immunosuppression with rapamycin and tacrolimus was started 5 days before the injection and maintained for study duration to prevent rejection of human cells. All mice were euthanized 4 weeks after intravitreal injection; both eyes were enucleated for retinal flat mount immunohistochemistry. The retinal vasculature was stained with Isolectin-GS-IB4. Confocal microscopy was used to image four circular areas of interest of retina, 1-mm diameter around the optic disc. Images of superficial, intermediate, and deep retinal capillary plexus layers within the areas of interest were obtained and analyzed using ImageJ software with the Vessel Analysis plugin to quantitate the retinal vascular density and vascular length density in the three plexus layers. RESULTS: Three distinct retinal capillary plexus layers were visualized and imaged using confocal microscopy. Eyes that received intravitreal injection of CD34+ BMSCs (N=9) had significantly higher vascular density and vascular length density in the superficial retinal capillary plexus when compared to the untreated contralateral eyes (N=9) or PBS treated control eyes (N=12; P values <0.05 using ANOVA followed by post-hoc tests). For the intermediate and deep plexus layers, the difference was not statistically significant. CONCLUSIONS: The protective effect of intravitreal injection of the human CD34+ BMSCs on the superficial retinal capillary plexus layers is demonstrated using confocal microscopy in this murine model of diabetic retinopathy.

6.
Ann Transl Med ; 9(15): 1275, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532412

RESUMO

BACKGROUND: To evaluate whether subretinal or intravitreal injection of human CD34+ bone marrow-derived stem cells (BMSC) can have protective effects on retinal degeneration that may be enhanced by coadministration of exosomes harvested from human bone marrow mesenchymal stem cells (MSCs). METHODS: Human CD34+ cells were harvested from the mononuclear cell fraction of bone marrow using magnetic beads and labeled with EGFP. Exosomes were harvested from cultured human MSCs under hypoxic conditions. Royal College of Surgeons (RCS) 3-weeks-old rats, immunosuppressed with cyclosporine A, received subretinal or intravitreal injection of CD34+ cells (50,000 cells), CD34+ cells with exosomes (50,000 cells+10 µg), exosomes alone (10 µg), or PBS. Retinal function was examined using electroretinography (ERG), and the eyes were harvested for histologic and immunohistochemical analysis. RESULTS: The b-wave amplitude of ERG at 2 weeks after injection was significantly higher in eyes with subretinal or intravitreal CD34+ BMSC alone or in combination with exosomes when compared to PBS injected eyes or untreated contralateral eyes. At 4 weeks after injection, the ERG signal decreased in all groups but eyes with subretinal CD34+ BMSCs alone or combined with exosomes showed partially preserved ERG signal and preservation of the outer nuclear layer of the retina near the injection site on histology when compared to eyes with PBS injection. Immunohistochemical analysis identified the human cells in the outer retina. Subretinal or intravitreal exosome injection had no effect on retinal degeneration when administered alone or in combination with CD34+ cells. CONCLUSIONS: Both subretinal and intravitreal injection of human CD34+ BMSCs can provide functional rescue of degenerating retina, although the effects were attenuated over time in this rat model. Regional preservation of the outer retina can occur near the subretinal injection site of CD34+ cells. These results suggest that CD34+ cells may have therapeutic potential in retinal degeneration.

7.
Cytotherapy ; 23(5): 368-372, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33714704

RESUMO

The International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee has been an interested observer of community interests in all matters related to MSC identity, mechanism of action, potency assessment and etymology, and it has regularly contributed to this conversation through a series of MSC pre-conferences and committee publications dealing with these matters. Arising from these reflections, the authors propose that an overlooked and potentially disruptive perspective is the impact of in vivo persistence on potency that is not predicted by surrogate cellular potency assays performed in vitro and how this translates to in vivo outcomes. Systemic delivery or extravascular implantation at sites removed from the affected organ system seems to be adequate in affecting clinical outcomes in many pre-clinical murine models of acute tissue injury and inflammatory pathology, including the recent European Medicines Agency-approved use of MSCs in Crohn-related fistular disease. The authors further propose that MSC viability and metabolic fitness likely dominate as a potency quality attribute, especially in recipients poised for salutary benefits as defined by emerging predictive biomarkers of response.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Camundongos
9.
Cytotherapy ; 22(11): 602-605, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933835

RESUMO

The serious consequences of the global coronavirus disease 2019 (COVID-19) pandemic have prompted a rapid global response to develop effective therapies that can lessen disease severity in infected patients. Cell-based approaches, primarily using mesenchymal stromal cells (MSCs), have demonstrated a strong safety profile and possible efficacy in patients with acute respiratory distress syndrome (ARDS), but whether these therapies are effective for treating respiratory virus-induced ARDS is unknown. According to the World Health Organization International Clinical Trials Registry Platform and the National Institutes of Health ClinicalTrials.gov databases, 27 clinical investigations of MSC-based cell therapy approaches have begun in China since the onset of the COVID-19 outbreak, with a growing number of academic and industry trials elsewhere as well. Several recent published reports have suggested potential efficacy; however, the available data presented are either anecdotal or from incomplete, poorly controlled investigations. Therefore, although there may be a potential role for MSCs and other cell-based therapies in treatment of COVID-19, these need to be investigated in a rationally designed, controlled approach if safety and efficacy are to be demonstrated accurately. The authors urge that the field proceed by finding a balance between swift experimentation and communication of results and scientifically coherent generation and analysis of clinical data.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Infecções por Coronavirus/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Pneumonia Viral/terapia , Síndrome do Desconforto Respiratório/terapia , Betacoronavirus , COVID-19 , China , Humanos , Células-Tronco Mesenquimais/citologia , Pandemias , SARS-CoV-2
10.
Stem Cells Transl Med ; 9(11): 1353-1364, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32720751

RESUMO

Diabetic foot ulcers are a major health care concern with limited effective therapies. Mesenchymal stem cell (MSC)-based therapies are promising treatment options due to their beneficial effects of immunomodulation, angiogenesis, and other paracrine effects. We investigated whether a bioengineered scaffold device containing hypoxia-preconditioned, allogeneic human MSCs combined with the beta-adrenergic antagonist timolol could improve impaired wound healing in diabetic mice. Different iterations were tested to optimize the primary wound outcome, which was percent of wound epithelialization. MSC preconditioned in 1 µM timolol at 1% oxygen (hypoxia) seeded at a density of 2.5 × 105 cells/cm2 on Integra Matrix Wound Scaffold (MSC/T/H/S) applied to wounds and combined with daily topical timolol applications at 2.9 mM resulted in optimal wound epithelialization 65.6% (24.9% ± 13.0% with MSC/T/H/S vs 41.2% ± 20.1%, in control). Systemic absorption of timolol was below the HPLC limit of quantification, suggesting that with the 7-day treatment, accumulative steady-state timolol concentration is minimal. In the early inflammation stage of healing, the MSC/T/H/S treatment increased CCL2 expression, lowered the pro-inflammatory cytokines IL-1B and IL6 levels, decreased neutrophils by 44.8%, and shifted the macrophage ratio of M2/M1 to 1.9 in the wound, demonstrating an anti-inflammatory benefit. Importantly, expression of the endothelial marker CD31 was increased by 2.5-fold with this treatment. Overall, the combination device successfully improved wound healing and reduced the wound inflammatory response in the diabetic mouse model, suggesting that it could be translated to a therapy for patients with diabetic chronic wounds.


Assuntos
Diabetes Mellitus Experimental/complicações , Imunofenotipagem/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Timolol/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Timolol/farmacologia
11.
J Gene Med ; 22(9): e3205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32335981

RESUMO

BACKGROUND: Tay-Sachs and Sandhoff disease are debilitating genetic diseases that affect the central nervous system leading to neurodegeneration through the accumulation of GM2 gangliosides. There are no cures for these diseases and treatments do not alleviate all symptoms. Hematopoietic stem cell gene therapy offers a promising treatment strategy for delivering wild-type enzymes to affected cells. By genetically modifying hematopoietic stem cells to express wild-type HexA and HexB, systemic delivery of functional enzyme can be achieved. METHODS: Primary human hematopoietic stem/progenitor cells and Tay-Sachs affected cells were used to evaluate the functionality of the vector. An immunodeficient and humanized mouse model of Sandhoff disease was used to evaluate whether the HexA/HexB lentiviral vector transduced cells were able to improve the phenotypes associated with Sandhoff disease. An immunodeficient NOD-RAG1-/-IL2-/- (NRG) mouse model was used to evaluate whether the HexA/HexB vector transduced human CD34+ cells were able to engraft and undergo normal multilineage hematopoiesis. RESULTS: HexA/HexB lentiviral vector transduced cells demonstrated strong expression of HexA and HexB and restored enzyme activity in Tay-Sachs affected cells. Upon transplantation into a humanized Sandhoff disease mouse model, improved motor and behavioral skills were observed. Decreased GM2 gangliosides were observed in the brains of HexA/HexB vector transduced cell transplanted mice. Increased peripheral blood levels of HexB was also observed in transplanted mice. Normal hematopoiesis in the peripheral blood and various lymphoid organs was also observed in transplanted NRG mice. CONCLUSIONS: These results highlight the potential use of stem cell gene therapy as a treatment strategy for Tay-Sachs and Sandhoff disease.


Assuntos
Antígenos CD34/genética , Atividade Motora/genética , Doença de Sandhoff/genética , Doença de Tay-Sachs/genética , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Vetores Genéticos/farmacologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Interleucina-2/genética , Lentivirus/genética , Camundongos , Camundongos Endogâmicos NOD , Doença de Sandhoff/patologia , Doença de Sandhoff/terapia , Doença de Tay-Sachs/patologia , Doença de Tay-Sachs/terapia , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/genética
12.
Cytotherapy ; 22(3): 123-126, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067856

RESUMO

As part of the International Society of Cell Therapy (ISCT) 2018 Annual Meeting, the Mesenchymal Stem/Stromal Cell (MSC) committee organized a pre-conference, which covered methods of improving MSC engraftment and potency in vivo and clinical efficacy using MSC potency assays. The speakers examined methods to improve clinical efficacy using MSC potency assays and methods to improve MSC engraftment/homing/potency in vivo. Discussion of patient "responders" versus "non-responders" in clinical trials and working toward ways to identify them were also included.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Mesenquimais/citologia , Sociedades Científicas , Bioensaio , Sobrevivência Celular , Ensaios Clínicos como Assunto , Humanos , Transplante de Células-Tronco Mesenquimais , Resultado do Tratamento
13.
Exp Eye Res ; 190: 107865, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682846

RESUMO

Human CD34 + stem cells are mobilized from bone marrow to sites of tissue ischemia and play an important role in tissue revascularization. This study used a murine model to test the hypothesis that intravitreal injection of human CD34 + stem cells harvested from bone marrow (BMSCs) can have protective effects in eyes with diabetic retinopathy. Streptozotocin-induced diabetic mice (C57BL/6J) were used as a model for diabetic retinopathy. Subcutaneous implantation of Alzet pump, loaded with Tacrolimus and Rapamycin, 5 days prior to intravitreal injection provided continuous systemic immunosuppression for the study duration to avoid rejection of human cells. Human CD34 + BMSCs were harvested from the mononuclear cell fraction of bone marrow from a healthy donor using magnetic beads. The CD34 + cells were labeled with enhanced green fluorescent protein (EGFP) using a lentiviral vector. The right eye of each mouse received an intravitreal injection of 50,000 EGFP-labeled CD34 + BMSCs or phosphate buffered saline (PBS). Simultaneous multimodal in vivo retinal imaging system consisting of fluorescent scanning laser ophthalmoscopy (enabling fluorescein angiography), optical coherence tomography (OCT) and OCT angiography was used to confirm the development of diabetic retinopathy and study the in vivo migration of the EGFP-labeled CD34 + BMSCs in the vitreous and retina following intravitreal injection. After imaging, the mice were euthanized, and the eyes were removed for immunohistochemistry. In addition, microarray analysis of the retina and retinal flat mount analysis of retinal vasculature were performed. The development of retinal microvascular changes consistent with diabetic retinopathy was visualized using fluorescein angiography and OCT angiography between 5 and 6 months after induction of diabetes in all diabetic mice. These retinal microvascular changes include areas of capillary nonperfusion and late leakage of fluorescein dye. Multimodal in vivo imaging and immunohistochemistry identified EGFP-labeled cells in the superficial retina and along retinal vasculature at 1 and 4 weeks following intravitreal cell injection. Microarray analysis showed changes in expression of 162 murine retinal genes following intravitreal CD34 + BMSC injection when compared to PBS-injected control. The major molecular pathways affected by intravitreal CD34 + BMSC injection in the murine retina included pathways implicated in the pathogenesis of diabetic retinopathy including Toll-like receptor, MAP kinase, oxidative stress, cellular development, assembly and organization pathways. At 4 weeks following intravitreal injection, retinal flat mount analysis showed preservation of the retinal vasculature in eyes injected with CD34 + BMSCs when compared to PBS-injected control. The study findings support the hypothesis that intravitreal injection of human CD34 + BMSCs results in retinal homing and integration of these human cells with preservation of the retinal vasculature in murine eyes with diabetic retinopathy.


Assuntos
Antígenos CD34/metabolismo , Diabetes Mellitus Experimental/terapia , Retinopatia Diabética/terapia , Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Animais , Diabetes Mellitus Experimental/diagnóstico , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/metabolismo , Angiofluoresceinografia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Injeções Intravítreas , Camundongos , Camundongos Endogâmicos C57BL , Estreptozocina , Tomografia de Coerência Óptica , Condicionamento Pré-Transplante
14.
Cartilage ; 11(3): 316-322, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-30156865

RESUMO

BACKGROUND: The repair of osteochondral lesions remains a challenge due to its poor vascularity and limited healing potential. Micronized cartilage matrix (MCM) is dehydrated, decellularized, micronized allogeneic cartilage matrix that contains the components of native articular tissue and is hypothesized to serve as a scaffold for the formation of hyaline-like tissue. Our objective was to demonstrate in vitro that the use of MCM combined with mesenchymal stem cells (MSCs) can lead to the formation of hyaline-like cartilage tissue in a single-stage treatment model. DESIGN: In group 1 (no wash), 250 µL MCM was reconstituted in 150 µL Dulbecco's phosphate-buffered saline (DPBS) for 5 minutes. Group 2 (saline wash) included 250 µL MCM washed in 20 mL DPBS for 30 minutes, then aspirated to remove all DPBS and reconstituted in 150 µL DPBS. Group 3 (serum wash): 250µL MCM washed in 20 mL DPBS for 30 minutes, then aspirated and reconstituted in 150 µL fetal bovine serum. Each group was then added to 50 µL solution of MSC suspended in DPBS at a concentration of 1.2 × 106 cells/350 µL. After 3 weeks, the defects were extracted and sectioned to perform viability and histologic analyses. RESULTS: Stem cells without rehydration of the MCM showed almost no viability whereas near complete cell viability was seen after rehydration with serum or saline solution, ultimately leading to chondrogenic differentiation and adhesion to the MCM particles. CONCLUSION: We have shown in this proof-of-concept in vitro study that MCM can serve as a scaffold for the growth of cartilage tissue for the treatment of osteochondral lesions.


Assuntos
Matriz Extracelular/transplante , Cartilagem Hialina/citologia , Tálus/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Células da Medula Óssea , Humanos , Técnicas In Vitro , Células-Tronco Mesenquimais , Estudo de Prova de Conceito
15.
Stem Cells ; 38(1): 15-21, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381842

RESUMO

Exosomes are nanovesicles secreted by virtually all cells. Exosomes mediate the horizontal transfer of various macromolecules previously believed to be cell-autonomous in nature, including nonsecretory proteins, various classes of RNA, metabolites, and lipid membrane-associated factors. Exosomes derived from mesenchymal stem/stromal cells (MSCs) appear to be particularly beneficial for enhancing recovery in various models of disease. To date, there have been more than 200 preclinical studies of exosome-based therapies in a number of different animal models. Despite a growing number of studies reporting the therapeutic properties of MSC-derived exosomes, their underlying mechanism of action, pharmacokinetics, and scalable manufacturing remain largely outstanding questions. Here, we review the global trends associated with preclinical development of MSC-derived exosome-based therapies, including immunogenicity, source of exosomes, isolation methods, biodistribution, and disease categories tested to date. Although the in vivo data assessing the therapeutic properties of MSC-exosomes published to date are promising, several outstanding questions remain to be answered that warrant further preclinical investigation.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Humanos
16.
Stem Cells ; 38(2): 231-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648388

RESUMO

Therapeutic applications for mesenchymal stem/stromal cells (MSCs) are growing; however, the successful implementation of these therapies requires the development of appropriate MSC delivery systems. Hydrogels are ideally suited to cultivate MSCs but tuning hydrogel properties to match their specific in vivo applications remains a challenge. Thus, further characterization of how hydrogel-based delivery vehicles broadly influence MSC function and fate will help lead to the next generation of more intelligently designed delivery vehicles. To date, few attempts have been made to comprehensively characterize hydrogel impact on the MSC transcriptome. Herein, we have synthesized cell-degradable hydrogels based on bio-inert poly(ethylene glycol) tethered with specific integrin-binding small molecules and have characterized their resulting effect on the MSC transcriptome when compared with 2D cultured and untethered 3D hydrogel cultured MSCs. The 3D culture systems resulted in alterations in the MSC transcriptome, as is evident by the differential expression of genes related to extracellular matrix production, glycosylation, metabolism, signal transduction, gene epigenetic regulation, and development. For example, genes important for osteogenic differentiation were upregulated in 3D hydrogel cultures, and the expression of these genes could be partially suppressed by tethering an integrin-binding RGD peptide within the hydrogel. Highlighting the utility of tunable hydrogels, when applied to ex vivo human wounds the RGD-tethered hydrogel was able to support wound re-epithelialization, possibly due to its ability to increase PDGF expression and decrease IL-6 expression. These results will aid in future hydrogel design for a broad range of applications.


Assuntos
Hidrogéis/uso terapêutico , Integrinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Diferenciação Celular , Humanos
18.
Biochem Biophys Res Commun ; 512(4): 729-735, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30926165

RESUMO

Mesenchymal stem cell (MSC) based therapies are currently being evaluated as a putative therapeutic in numerous human clinical trials. Recent reports have established that exosomes mediate much of the therapeutic properties of MSCs. Exosomes are nanovesicles which mediate intercellular communication, transmitting signals between cells which regulate a diverse range of biological processes. MSC-derived exosomes are packaged with numerous types of proteins and RNAs, however, their metabolomic and lipidomic profiles to date have not been well characterized. We previously reported that MSCs, in response to priming culture conditions that mimic the in vivo microenvironmental niche, substantially modulate cellular signaling and significantly increase the secretion of exosomes. Here we report that MSCs exposed to such priming conditions undergo glycolytic reprogramming, which homogenizes MSCs' metabolomic profile. In addition, we establish that exosomes derive from primed MSCs are packaged with numerous metabolites that have been directly associated with immunomodulation, including M2 macrophage polarization and regulatory T lymphocyte induction.


Assuntos
Exossomos/imunologia , Células-Tronco Mesenquimais/imunologia , Linhagem Celular , Exossomos/metabolismo , Glicólise , Humanos , Imunomodulação , Ativação de Macrófagos , Células-Tronco Mesenquimais/metabolismo , Metaboloma , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
19.
Transfusion ; 59(S1): 893-897, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30383901

RESUMO

Mesenchymal stem/stromal cells (MSCs) may be able to improve ischemic conditions as they can actively seek out areas of low oxygen and secrete proangiogenic factors. In more severe trauma and chronic cases, however, cells alone may not be enough. Therefore, we have combined the stem cell and angiogenic factor approaches to make a more potent therapy. We developed an engineered stem cell therapy product designed to treat critical limb ischemia that could also be used in trauma-induced scarring and fibrosis where additional collateral blood flow is needed following damage to and blockage of the primary vessels. We used MSCs from normal human donor marrow and engineered them to produce high levels of the angiogenic factor vascular endothelial growth factor (VEGF). The MSC/VEGF product has been successfully developed and characterized using good manufacturing practice (GMP)-compliant methods, and we have completed experiments showing that MSC/VEGF significantly increased blood flow in the ischemic limb of immune deficient mice, compared to the saline controls in each study. We also performed safety studies demonstrating that the injected product does not cause harm and that the cells remain around the injection site for more than 1 month after hypoxic preconditioning. An on-demand formulation system for delivery of the product to clinical sites that lack cell processing facilities is in development.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Humanos , Transplante de Células-Tronco Mesenquimais , Cicatrização/fisiologia
20.
Stem Cells Dev ; 28(2): 114-119, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30398391

RESUMO

Mesenchymal stem/stromal cells (MSCs) offer great promise in the treatment of ischemic injuries, including stroke, heart infarction, and limb ischemia. However, poor cell survival after transplantation remains a major obstacle to achieve effective MSC therapies. To improve cell survival and retention, we transplanted human bone marrow MSCs with or without a specific prosurvival factor (PSF) cocktail consisting of IGF1, Bcl-XL, a caspase inhibitor, a mitochondrial pathway inhibitor, and Matrigel into the limbs of immune deficient mice, after induction of hindlimb ischemia. The PSF markedly prolonged the retention of the MSCs in the ischemic limb muscles as demonstrated by bioluminescence imaging. Using microcomputed tomography to image the limb muscle vasculature in the mice 9 weeks after the transplantation, we found that the mice transplanted with MSCs without PSF did not show a significant increase in the blood vessels in the ischemic limb compared with the nontransplanted control mice. In contrast, the mice transplanted with MSCs plus PSF showed a significant increase in the blood vessels, especially the larger and branching vessels, in the ischemic limb compared with the control mice that did not receive MSCs. Thus, we demonstrated that prolonged retention of MSCs using PSF effectively promoted angiogenesis in ischemic animal limbs. This study highlights the importance of enhancing cell survival in the development of effective MSC therapies to treat vascular diseases.


Assuntos
Transplante de Medula Óssea/métodos , Extremidades/irrigação sanguínea , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Neovascularização Fisiológica , Medicina Regenerativa/métodos , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Linhagem Celular , Colágeno/farmacologia , Ciclosporina/farmacologia , Combinação de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Laminina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pinacidil/farmacologia , Proteoglicanas/farmacologia , Proteína bcl-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA