Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Oral Biosci ; 65(3): 243-252, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37343785

RESUMO

OBJECTIVES: Histidine decarboxylase (HDC), a histamine synthase, is expressed in various tissues and is induced by proinflammatory cytokines such as TNFα. As they age, C57BL/6 mice show auto-antibody deposition and lymphocyte infiltration into various tissues, including salivary glands. However, the mechanism underlying cell infiltration and the change in HDC expression in salivary glands with aging remain unclear. Thus, we aimed to elucidate the relationship between histamine and inflammaging. METHODS: We investigated the change in histology and HDC expression in the major salivary glands (parotid, submandibular, and sublingual) of 6-week- and 9-month-old wild-type mice. We also determined the histological changes, cytokine expression, and anti-aging factor Klotho in the salivary glands of 9-month-old wild-type and HDC-deficient (HDC-KO) mice. RESULTS: Cell infiltration was observed in the submandibular gland of 9-month-old wild-type mice. Although most cells infiltrating the submandibular glands were CD3-positive and B220-positive lymphocytes, CD11c-positive and F4/80-positive monocyte lineages were also detected. HDC, TNFα, and IL-1ß mRNA expression increased in the submandibular gland of 9-month-old wild-type mice. The expression of PPARγ, an anti-inflammatory protein, declined in 9-month-old wild-type mice, and Klotho expression increased in 9-month-old HDC-KO mice. Immunohistochemistry showed that Klotho-positive cells disappeared in the submandibular gland of 9-month-old wild-type mice, while Klotho was detected in all salivary glands in HDC-KO mice of the same age. CONCLUSION: Our findings demonstrate the multifunctionality of histamine and can aid in the development of novel therapeutic methods for inflammatory diseases such as Sjogren's syndrome and age-related dysfunctions.


Assuntos
Glândula Submandibular , Fator de Necrose Tumoral alfa , Camundongos , Animais , Glândula Submandibular/metabolismo , Glândula Submandibular/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Histamina/metabolismo , Camundongos Endogâmicos C57BL , Linfócitos/metabolismo , Citocinas/metabolismo , Envelhecimento
2.
Int J Mol Sci ; 24(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36902003

RESUMO

Sweat plays a critical role in human body, including thermoregulation and the maintenance of the skin environment and health. Hyperhidrosis and anhidrosis are caused by abnormalities in sweat secretion, resulting in severe skin conditions (pruritus and erythema). Bioactive peptide and pituitary adenylate cyclase-activating polypeptide (PACAP) was isolated and identified to activate adenylate cyclase in pituitary cells. Recently, it was reported that PACAP increases sweat secretion via PAC1R in mice and promotes the translocation of AQP5 to the cell membrane through increasing intracellular [Ca2+] via PAC1R in NCL-SG3 cells. However, intracellular signaling mechanisms by PACAP are poorly clarified. Here, we used PAC1R knockout (KO) mice and wild-type (WT) mice to observe changes in AQP5 localization and gene expression in sweat glands by PACAP treatment. Immunohistochemistry revealed that PACAP promoted the translocation of AQP5 to the lumen side in the eccrine gland via PAC1R. Furthermore, PACAP up-regulated the expression of genes (Ptgs2, Kcnn2, Cacna1s) involved in sweat secretion in WT mice. Moreover, PACAP treatment was found to down-regulate the Chrna1 gene expression in PAC1R KO mice. These genes were found to be involved in multiple pathways related to sweating. Our data provide a solid basis for future research initiatives in order to develop new therapies to treat sweating disorders.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Suor , Camundongos , Humanos , Animais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Suor/metabolismo , Sudorese , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Hipófise/metabolismo
3.
Peptides ; 130: 170332, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445876

RESUMO

Evidence shows that pituitary adenylate cyclase-activating polypeptide (PACAP) improves stroke outcomes and dementia. The blood-brain barrier (BBB) controls the peptide and regulatory protein exchange between the central nervous system and the blood; the transport of these regulatory substances across the BBB has been altered in animal models of stroke and Alzheimer's disease (AD). PACAP is a powerful neurotrophin that can cross the BBB, which may aid in the therapy of neurodegenerative diseases, including stroke and AD. PACAP may function as a potential drug in the treatment, prevention, or management of stroke and AD and other neurodegenerative conditions. Here, we review the effects of PACAP in studies on stroke and dementias.


Assuntos
Fármacos Neuroprotetores/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Demência/metabolismo , Demência/fisiopatologia , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
4.
J Mol Neurosci ; 68(3): 420-426, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29931503

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family of peptides. PACAP and its three receptor subtypes are expressed in neural tissues and in the eye, including the retina, cornea, and lacrimal gland. PACAP is known to exert pleiotropic effects on the central nervous system and in eye tissues where it plays important roles in protecting against dry eye. This review provides an overview of current knowledge regarding dry eye symptoms in aged animals and humans and the protective effects, mechanisms of action. In addition, we also refer to the development of a new preventive/therapeutic method by PACAP of dry eye patients.


Assuntos
Síndromes do Olho Seco/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/uso terapêutico , Animais , Síndromes do Olho Seco/etiologia , Humanos
5.
Cell Tissue Res ; 367(2): 297-309, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27817114

RESUMO

We previously reported that the injection of nitrogen-containing bisphosphonate (NBP) induced the site of erythropoiesis to shift from the bone marrow (BM) to the spleen. Our previous study established a severely anemic mouse model that was treated with a combination of NBP with phenylhydrazine (PHZ), which induced newly discovered hematopoietic organs in the omentum. No reports have shown that new hematopoietic organs form under any condition. We characterized the structures and factors related to the formation of these new organs. Splenectomized mice were treated with NBP to inhibit erythropoiesis in the BM and then injected with PHZ to induce hemolytic anemia. The mice showed severe anemia and wine-colored structures appeared in the omentum. Some hematopoietic cells, including megakaryocytes, and well-developed sinuses were observed in these structures. Numerous TER119-positive erythroblasts were located with cells positive for PCNA, a cell proliferation marker. C-kit-positive cells were detected and mRNAs related to hematopoiesis were expressed in these structures. Moreover, TER119-positive erythroblasts emerged and formed clusters and hematopoiesis-related factors were detected in the omentum of mice treated with NBP and PHZ. The levels of G-CSF in the serum and hematopoietic progenitor cells (HPCs) in the peripheral blood were increased upon treatment with both NBP and PHZ. These results suggest that the induced hematopoietic structures act as the sites of erythropoiesis and that NBP-induced G-CSF production causes HPC mobilization, homing and colonization in the omentum because they constitutively express some factors, including SDF-1; thus, the newly discovered hematopoietic structure in this study might be formed.


Assuntos
Anemia/patologia , Difosfonatos/farmacologia , Fator Estimulador de Colônias de Granulócitos/biossíntese , Células-Tronco Hematopoéticas/citologia , Nitrogênio/farmacologia , Omento/patologia , Anemia/sangue , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Ensaio de Unidades Formadoras de Colônias , Modelos Animais de Doenças , Feminino , Imunofluorescência , Fator Estimulador de Colônias de Granulócitos/sangue , Células-Tronco Hematopoéticas/ultraestrutura , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Anat Rec (Hoboken) ; 299(9): 1293-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27339371

RESUMO

Xerostomia, or dry mouth, is a common syndrome that is generally treated with artificial saliva; however, no other effective methods have yet been established. Saliva secretion is mainly under the control of the autonomic nervous system. Pituitary adenylate cyclase-activating polypeptide (PACAP) is recognized as a multifunctional neuropeptide in various organs. In this study, we examined the effect of PACAP on saliva secretion, and detected the distribution of the PACAP type 1 receptor (PAC1R) in major salivary glands, including the parotid, submandibular, and sublingual glands, in 9-week-old male C57BL/6 mice. Intranasal administration of PACAP 38 increased the amount of saliva secreted, which was not inhibited by atropine pretreatment. Immunohistochemical analysis showed that PAC1R was distributed in the three major salivary glands. In the parotid and sublingual glands, PAC1R was detected in striated duct cells, whereas in the submandibular gland, a strong PAC1R immunoreaction was detected in tall columnar epithelial cells in the granular ducts (i.e., pillar cells), as well as in some striated duct cells. PACAP significantly increased the concentration of epidermal growth factor in saliva. These results suggest that PACAP directly regulates saliva secretion by controlling the absorption activity in the ducts, and that pillar cells regulate the function of granular epithelial cells in the granular duct, such as the secretion of growth factors into the saliva. Collectively, these results suggest the possibility of PACAP as a new effective treatment of xerostomia. Anat Rec, 299:1293-1299, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Saliva/metabolismo , Glândulas Salivares/efeitos dos fármacos , Animais , Fator de Crescimento Epidérmico/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Saliva/química , Glândulas Salivares/metabolismo
7.
BMC Hematol ; 16: 4, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877876

RESUMO

BACKGROUND: Mammalian erythropoiesis can be divided into two distinct types, primitive and definitive, in which new cells are derived from the yolk sac and hematopoietic stem cells, respectively. Primitive erythropoiesis occurs within a restricted period during embryogenesis. Primitive erythrocytes remain nucleated, and their hemoglobins are different from those in definitive erythrocytes. Embryonic type hemoglobin is expressed in adult animals under genetically abnormal condition, but its later expression has not been reported in genetically normal adult animals, even under anemic conditions. We previously reported that injecting animals with nitrogen-containing bisphosphonate (NBP) decreased erythropoiesis in bone marrow (BM). Here, we induced severe anemia in a mouse model by injecting NBP injection in combination with phenylhydrazine (PHZ), and then we analyzed erythropoiesis and the levels of different types of hemoglobin. METHODS: Splenectomized mice were treated with NBP to inhibit erythropoiesis in BM, and with PHZ to induce hemolytic anemia. We analyzed hematopoietic sites and peripheral blood using morphological and molecular biological methods. RESULTS: Combined treatment of splenectomized mice with NBP and PHZ induced critical anemia compared to treatment with PHZ alone, and numerous nucleated erythrocytes appeared in the peripheral blood. In the BM, immature CD71-positive erythroblasts were increased, and extramedullary erythropoiesis occurred in the liver. Furthermore, embryonic type globin mRNA was detected in both the BM and the liver. In peripheral blood, spots that did not correspond to control hemoglobin were observed in 2D electrophoresis. ChIP analyses showed that KLF1 and KLF2 bind to the promoter regions of ß-like globin. Wine-colored capsuled structures were unexpectedly observed in the abdominal cavity, and active erythropoiesis was also observed in these structures. CONCLUSION: These results indicate that primitive erythropoiesis occurs in adult mice to rescue critical anemia because primitive erythropoiesis does not require macrophages as stroma whereas macrophages play a pivotal role in definitive erythropoiesis even outside the medulla. The cells expressing embryonic hemoglobin in this study were similar to primitive erythrocytes, indicating the possibility that yolk sac-derived primitive erythroid cells may persist into adulthood in mice.

8.
J Cell Physiol ; 230(2): 395-405, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25056912

RESUMO

Although it is known that osteoclasts are multinucleated cells that are responsible for bone resorption, the mechanism by which their size is regulated is unclear. We previously reported that an actin-rich superstructure, termed the zipper-like structure, specifically appears during the fusion of large osteoclast-like cells (OCLs). Actin cytoskeleton reorganization in osteoclasts is regulated by a signaling network that includes the macrophage colony-stimulating factor (M-CSF) receptor, a proto-oncogene, Src, and small GTPases. Here, we examined the role of actin reorganization in the multinucleation of OCLs differentiated from RAW 264.7 cells using various pharmacological agents. Jasplakinolide, which stabilizes actin stress fibers, induced the development of small OCLs, and the Src inhibitor SU6656 and the dynamin inhibitor dynasore impaired the maintenance of the podosome belt and the zipper-like structure. These inhibitors decreased the formation of large OCLs but increased the number of small OCLs. M-CSF is known to stimulate osteoclast fusion. M-CSF signaling via Src up-regulated Rac1 activity but down-regulated Rho activity. Rac1 and Rho localized to the center of the zipper-like structure. Rho activator II promoted the formation of small OCLs, whereas the Rho inhibitor Y27632 promoted the generation of large OCLs. These results suggest that the status of the actin cytoskeleton signaling network determines the size of OCLs during cell fusion.


Assuntos
Citoesqueleto de Actina/metabolismo , Reabsorção Óssea/tratamento farmacológico , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osteoclastos/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Fusão Celular , Células Cultivadas , Camundongos
9.
Peptides ; 36(2): 168-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22687366

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) is a potent neurotrophic and neuroprotectant that is transported across the blood-brain barrier in amounts sufficient to affect brain function. However, its short half-life in blood makes it difficult to administer peripherally. Here, we determined whether the radioactively labeled 38 amino acid form of PACAP can enter the brain after intranasal (i.n.) administration. Occipital cortex and striatum were the regions with the highest uptake, peaking at levels of about 2-4% of the injected dose per gram of brain region. Inclusion of unlabeled PACAP greatly increased retention of I-PACAP by brain probably because of inhibition of the brain-to-blood efflux transporter for PACAP located at the blood-brain barrier. Sufficient amounts of PACAP could be delivered to the brain to affect function as shown by improvement of memory in aged SAMP8 mice, a model of Alzheimer's disease. We found that each of three cyclodextrins when included in the i.n. injection produced a unique distribution pattern of I-PACAP among brain regions. As examples, ß-cyclodextrin greatly increased uptake by the occipital cortex and hypothalamus, α-cyclodextrin increased uptake by the olfactory bulb and decreased uptake by the occipital cortex and striatum, and (2-hydropropyl)-ß-cyclodextrin increased uptake by the thalamus and decreased uptake by the striatum. These results show that therapeutic amounts of PACAP can be delivered to the brain by intranasal administration and that cyclodextrins may be useful in the therapeutic targeting of peptides to specific brain regions.


Assuntos
Encéfalo/metabolismo , Ciclodextrinas/farmacologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/administração & dosagem , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacocinética , Administração Intranasal , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/metabolismo , alfa-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/farmacologia
10.
Acta Histochem ; 114(1): 55-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21397933

RESUMO

It is well established that dental pulp has the ability to form calcified tissue, however, the precise process of calcified tissue formation and its characteristics are still undetermined. In this study we examined the process and the matrix components of the calcified tissues by means of subcutaneously transplanted dental pulp tissue. The mid-third of the mouse incisor pulp was transplanted into abdominal subcutaneous tissue. Two calcified tissues were independently formed within the implanted pulp at 7 days after the implantation, one developed in the peripheral region and the other was formed in the middle region of the pulp. Histological investigation indicated the existence of hypertrophic chondrocytes in the peripheral calcified tissue. Immunohistochemical study indicated the colocalization of types I and II collagen surrounding these cells. RT-PCR analysis indicated the transient expression of type II collagen at 7 days and the constant expression of type I collagen, osteonectin, osteocalcin and dentin matrix protein-1 and 2 at all examined times. Dentin sialophosphoprotein was only detected at 28 days after the transplantation. These results indicated that dental pulp cells might have the capacity to form calcified tissue by implanted dental pulp and it is possible that the difference of local environments induced the cells to form different types of calcified tissues within the implanted pulp.


Assuntos
Calcificações da Polpa Dentária , Polpa Dentária/patologia , Polpa Dentária/transplante , Tela Subcutânea , Animais , Colágeno Tipo I/análise , Colágeno Tipo I/genética , Colágeno Tipo II/análise , Colágeno Tipo II/genética , Proteínas da Matriz Extracelular/análise , Proteínas da Matriz Extracelular/genética , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , Osteocalcina/genética , Osteonectina/genética , Fosfoproteínas/análise , Fosfoproteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialoglicoproteínas/análise
11.
Cell Tissue Res ; 346(1): 99-109, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21922246

RESUMO

The presence of macrophages in dental pulp is well known. However, whether these macrophages proliferate and differentiate in the dental pulp in situ, or whether they constantly migrate from the blood stream into the dental pulp remains unknown. We have examined and compared the development of dental pulp macrophages in an organ culture system with in vivo tooth organs to clarify the developmental mechanism of these macrophages. The first mandibular molar tooth organs from ICR mice aged between 16 days of gestation (E16) to 5 days postnatally were used for in vivo experiments. Those from E16 were cultured for up to 14 days with or without 10% fetal bovine serum. Dental pulp tissues were analyzed with immunohistochemistry to detect the macrophages and with reverse transcription and the polymerase chain reaction (RT-PCR) for the detection of factors related to macrophage development. The growth curves for the in vivo and in vitro cultured cells revealed similar numbers of F4/80-positive macrophages in the dental pulp. RT-PCR analysis indicated the constant expression of myeloid colony-stimulating factor (M-CSF) in both in-vivo- and in-vitro-cultured dental pulp tissues. Anti-M-CSF antibodies significantly inhibited the increase in the number of macrophages in the dental pulp. These results suggest that (1) most of the dental pulp macrophages proliferate and differentiate in the dental pulp without a supply of precursor cells from the blood stream, (2) M-CSF might be a candidate molecule for dental pulp macrophage development, and (3) serum factors might not directly affect the development of macrophages.


Assuntos
Diferenciação Celular/fisiologia , Proliferação de Células , Macrófagos/citologia , Dente Molar/citologia , Animais , Bovinos , Polpa Dentária , Feminino , Regulação da Expressão Gênica/fisiologia , Fator Estimulador de Colônias de Macrófagos/biossíntese , Macrófagos/metabolismo , Mandíbula/citologia , Mandíbula/embriologia , Mandíbula/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Dente Molar/embriologia , Dente Molar/metabolismo , Técnicas de Cultura de Tecidos
12.
Cell Immunol ; 271(1): 197-204, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21798527

RESUMO

Our previous study indicated that injecting nitrogen-containing bisphosphonate (NBP) induced the site of erythropoiesis to shift from the bone marrow (BM) to the spleen. This was due to the depletion of BM-resident macrophages, which support erythropoiesis. In this study, we examined NBP treatment-induced extramedullary hematopoiesis in splenectomized mice, focusing on hepatic hematopoiesis. NBP-treated mice did not display anemia or significant change in erythropoietin production, while megakaryopoiesis and erythropoiesis were constantly observed in the liver. Erythroblastic islands were detected in the sinusoidal lumen. Kupffer cells expressed VCAM-1 following NBP treatment, which is an important factor for erythroblast differentiation. Cl(2)MBP-liposome treatment depleted the erythroblastic islands, and decreased the number of hematopoietic cells in the liver, as determined by colony forming assays. Together, these results indicate that Kupffer cells support erythropoiesis, acting as stromal cells in the liver, and that they might act as a niche for hematopoietic precursor cells in an emergency.


Assuntos
Difosfonatos/farmacologia , Eritropoese/efeitos dos fármacos , Células de Kupffer/efeitos dos fármacos , Esplenectomia , Animais , Antígenos CD34/genética , Antígenos de Diferenciação/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Eritroblastos/efeitos dos fármacos , Eritroblastos/metabolismo , Eritroblastos/ultraestrutura , Eritropoetina/sangue , Feminino , Expressão Gênica/efeitos dos fármacos , Hematócrito , Imuno-Histoquímica , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/ultraestrutura , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Receptores da Eritropoetina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Molécula 1 de Adesão de Célula Vascular/metabolismo
13.
J Pharmacol Exp Ther ; 329(2): 608-14, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19179541

RESUMO

The treatment of brain malignancies with boron neutron capture therapy depends on their ability to cross the blood-brain barrier (BBB). An especially promising class of boron-containing compounds is the rhenacarboranes that, if able to cross the BBB, could act as delivery vehicles as well as a source of boron. Here, we examined the ability of the 3-NO-3,3-kappa(2)-(2,2'-N(2)C(10)H(6)(Me)[(CH(2))(7)(131)I]-4,4')-closo-3,1,2-ReC(2)B(9)H(11) (rhenacarborane) labeled with iodine-131 to be taken up into the bloodstream after subcutaneous administration and to cross the BBB. The (131)I-rhenacarborane was quickly absorbed from the injection site and reached a steady state in arterial serum of 2.59%/ml of the administered dose. Between 73 and 95% of the radioactivity in serum 6 h after administration represented intact (131)I-rhenacarborane. Its octanol/buffer partition coefficient was 1.74, showing it to be lipophilic. Tissue/serum ratios for brain, lung, and liver showed classic patterns for a lipid-soluble substance with high levels immediately achieved and rapid redistribution. For brain, a steady state of approximately 0.107% of the administered dose/gram-brain was rapidly reached, and 71% of the radioactivity in brain 6 h after subcutaneous administration represented intact (131)I-rhenacarborane. Steady-state values were 1.53 and 0.89% of the injected dose per gram for lung and liver, respectively. (131)I-Rhenacarborane was quickly effluxed from brain by a nonsaturable system after its injection into the lateral ventricle of the brain. In conclusion, these results show that a rhenacarborane was enzymatically resistant and able to cross the BBB by transmembrane diffusion and accumulate in brain in substantial amounts. This supports their use as therapeutic agents for targeting the central nervous system.


Assuntos
Antineoplásicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Compostos de Boro/farmacocinética , Compostos Organometálicos/farmacocinética , Rênio/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/uso terapêutico , Compostos de Boro/administração & dosagem , Compostos de Boro/sangue , Compostos de Boro/uso terapêutico , Terapia por Captura de Nêutron de Boro/métodos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/sangue , Compostos Organometálicos/uso terapêutico , Permeabilidade
14.
J Cereb Blood Flow Metab ; 29(2): 411-22, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19002200

RESUMO

By isolating for the first time ever a peptide transporter from the blood-brain barrier (BBB) and developing an antisense that selectively targets the brain-to-blood efflux component, we were able to deliver a therapeutic concentration of the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) 27 to brain in animal models of Alzheimer's and stroke. Efflux pumps at the BBB are major causes of BBB impermeability to peptides. PACAP is neuroprotective in vitro in femtomole amounts, but brain uptake of PACAP27 is limited by an efflux component of peptide transport system-6 (PTS-6). Here, we characterized, isolated, and sequenced this component of PTS-6, identifying it as beta-F1 ATPase, and colocalized it with PACAP27 on BBB endothelial cells. Antisenses targeting the BBB inhibited PACAP27 efflux, thus increasing brain uptake of PACAP27. Treatment with antisense+PACAP27 improved cognition in a mouse model of Alzheimer's disease and reduced infarct size after cerebral ischemia. This represents the first isolation from BBB tissue of a peptide transporter and shows that inhibition of peptide efflux pumps is a potential strategy for drug delivery to brain.


Assuntos
Doença de Alzheimer/enzimologia , Encéfalo/enzimologia , Células Endoteliais/enzimologia , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Oligonucleotídeos Antissenso/genética , Acidente Vascular Cerebral/enzimologia , Adenosina Trifosfatases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Animais , Modelos Animais de Doenças , Terapia Genética , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Ligação Proteica , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
15.
Regul Pept ; 145(1-3): 88-95, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17942168

RESUMO

Activity-dependent neurotrophic protein (ADNP) was discovered as a novel response gene for vasoactive intestinal polypeptide. We have reported that PACAP strongly stimulated ADNP mRNA expression in a mouse neuron/glial cell culture; however, the distribution of ADNP in the brain and its possible co-expression with the PACAP receptor (PAC1R) are unknown. In this study, the specificity of the ADNP antibody used in subsequent immunohistochemistry experiments was first characterized. Mouse brain lysates were analysed by Western blot, with an ADNP-immunopositive signal corresponding to the expected molecular weight of ADNP detected as a 124 kDa band. Immunohistochemical staining to identify ADNP and PAC1R immunoreactivity in mouse brain was then performed. ADNP immunoreactive cells were observed in the cerebral cortex, cerebellum, hippocampus, and medial septum of brain slices. ADNP-immunoreactive cells in the cerebral cortex were multi-polar-shaped and co-immunostained with the astrocyte marker, glial fibrillary acidic protein (GFAP). ADNP-immunoreactive cells in the cerebellum were found to surround Purkinje cells and showed GFAP immunoreactivity. On the other hand, ADNP-immunoreactive cells in the hippocampus and septum were round in shape and co-immunostained with the neuron marker, neuron-specific enorase. All of the ADNP-immunopositive cells co-localized with PAC1R immunoreactivity. These observations suggest that ADNP is expressed in both astrocytes and neurons, and that ADNP expression may be regulated by PACAP.


Assuntos
Encéfalo/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Biomarcadores , Western Blotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL
16.
Regul Pept ; 145(1-3): 80-7, 2008 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-17900711

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to participate in the regulation of neuronal proliferation and differentiation. While these processes are considered to be mediated via PACAP's actions on the PACAP-specific receptor, PAC1R, the precise distribution of PAC1R during neurodevelopment has not yet to be elucidated in detail. The purpose of this study is to examine the distribution of PAC1R in the neurogenic region of the rostral migratory stream (RMS) from the apical subventricular zone (SVZa) to the olfactory bulb (OB) in infant mice using immunostaining. Co-immunostaining for PAC1R in a variety types of cell were carried out using different markers. These included the neural stem cell markers, nestin and glial fibrillary acidic protein (GFAP), a marker for migrating neuroblasts (doublecortin, DCX), a marker for immature neurons betaIII-tubulin, (Tuj1), and a marker for mature neurons, neuronal nuclei (NeuN). PAC1R-like immunoreactivity (LI) was observed in the RMS. However, the intensity of PAC1R- LI was different depending on the regions which were investigated. PAC1R-LI was strong in nestin- and GFAP-positive cells in the SVZa and was also observed in NeuN-positive cells in the OB. However, the intensities of PAC1R-LI in DCX- and Tuj1-positive cells were weaker than the other markers. These results suggest that PACAP may participate in the neurodevelopment with the stage-specific expression of PAC1R and that PACAP plays important roles in neurons as well as in glial cells.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Transporte Biológico , Proteína Duplacortina , Camundongos , Camundongos Endogâmicos ICR
17.
Nat Neurosci ; 9(3): 381-8, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491079

RESUMO

The gut hormone and neuropeptide ghrelin affects energy balance and growth hormone release through hypothalamic action that involves synaptic plasticity in the melanocortin system. Ghrelin binding is also present in other brain areas, including the telencephalon, where its function remains elusive. Here we report that circulating ghrelin enters the hippocampus and binds to neurons of the hippocampal formation, where it promotes dendritic spine synapse formation and generation of long-term potentiation. These ghrelin-induced synaptic changes are paralleled by enhanced spatial learning and memory. Targeted disruption of the gene that encodes ghrelin resulted in decreased numbers of spine synapses in the CA1 region and impaired performance of mice in behavioral memory testing, both of which were rapidly reversed by ghrelin administration. Our observations reveal an endogenous function of ghrelin that links metabolic control with higher brain functions and suggest novel therapeutic strategies to enhance learning and memory processes.


Assuntos
Espinhas Dendríticas/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Hormônios Peptídicos/genética , Sinapses/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/ultraestrutura , Grelina , Hipocampo/efeitos dos fármacos , Hipocampo/ultraestrutura , Aprendizagem/efeitos dos fármacos , Aprendizagem/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nootrópicos/metabolismo , Nootrópicos/farmacologia , Hormônios Peptídicos/farmacologia , Ratos , Ratos Sprague-Dawley , Percepção Espacial/efeitos dos fármacos , Percepção Espacial/fisiologia , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
18.
Exp Neurol ; 191(1): 137-44, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15589520

RESUMO

Pituitary adenylate cyclase activating polypeptide (PACAP) has neuroprotective effects against ischemia, even when given by intravenous (iv) administration 24 h after stroke. Transport of PACAP across the blood-brain barrier (BBB) by peptide transport system (PTS)-6 underlies its effectiveness after iv administration. However, PACAP transport is modified after central nervous system (CNS) injury, raising the question of whether cytokines or BBB disruption affects PTS-6 activity. Lipopolysaccharide (LPS) is derived from bacterial cell walls and affects the passage of other proteins across the BBB through its release of cytokines and disruption of the BBB. Here, we examined by several methods the transport of radioactively labeled PACAP (I-PACAP) across the BBB after intraperitoneal (ip) injection of LPS. After three doses of LPS, studies at a single time point found a differential effect of LPS on the brain/serum ratio for I-PACAP and radioactively labeled albumin (I-Albumin). Whereas LPS increased the ratio for I-Albumin, demonstrating BBB disruption, it decreased the ratio for I-PACAP. Multiple-time regression analysis, capillary depletion, and brain perfusion showed that this decrease was fully explained by a decrease in the initial, reversible binding of I-PACAP to brain endothelium, while the rate of transport of PACAP into the brain was not altered. These methods also showed that the LPS-treated mice were volume contracted. This volume contraction concentrated the amount of I-PACAP in the blood and so increased the amount of I-PACAP presented to the BBB. Lack of change in transport rate combined with volume contraction resulted in a net increase of about 30% of the iv dose of I-PACAP entering the brain. LPS did not alter the efflux of I-PACAP from the CNS. In conclusion, PTS-6 remains active and should be able to deliver therapeutic amounts of PACAP to the CNS in brain injuries involving cytokine release and BBB disruption.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Lipopolissacarídeos/farmacologia , Fatores de Crescimento Neural/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
19.
Peptides ; 23(12): 2197-202, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12535699

RESUMO

The blood-brain barrier (BBB) controls the exchange of peptides and regulatory proteins between the central nervous system (CNS) and the blood. Transport across the BBB of such regulatory substances is altered in animal models of Alzheimer's disease. These alterations could lead to cognitive impairments or diminish their therapeutic potential. Here, we measured the transport rate of radioactively labeled pituitary adenylate cyclase-activating polypeptide (PACAP) from blood into whole brain and into 11 brain regions in three groups of mice: young (2 months old) ICR, young (2 months old) SAMP8, and aged (12 months old) SAMP8 mice. The SAMP8 is a strain which develops impaired learning and memory with aging that correlates with an age-related increase in brain levels of amyloid beta protein (A beta P). PACAP is a powerful neurotrophin that may have a therapeutic role in neurodegenerative diseases. We found that I-PACAP crossed the BBB fastest at the hypothalamus and the hippocampus in all three groups. Slower transport rates into the whole brain, the olfactory bulb, the hypothalamus, and the hippocampus for aged SAMP8 mice was likely related to differences both from strain and expression of A beta P with aging.


Assuntos
Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/fisiologia , Neuropeptídeos/metabolismo , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos ICR , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA