Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37214176

RESUMO

CRISPR screens are a powerful source of biological discovery, enabling the unbiased interrogation of gene function in a wide range of applications and species. In pooled CRISPR screens, various genetically encoded perturbations are introduced into pools of cells. The targeted cells proliferate under a biological challenge such as cell competition, drug treatment or viral infection. Subsequently, the perturbation-induced effects are evaluated by sequencing-based counting of the guide RNAs that specify each perturbation. The typical results of such screens are ranked lists of genes that confer sensitivity or resistance to the biological challenge of interest. Contributing to the broad utility of CRISPR screens, adaptations of the core CRISPR technology make it possible to activate, silence or otherwise manipulate the target genes. Moreover, high-content read-outs such as single-cell RNA sequencing and spatial imaging help characterize screened cells with unprecedented detail. Dedicated software tools facilitate bioinformatic analysis and enhance reproducibility. CRISPR screening has unravelled various molecular mechanisms in basic biology, medical genetics, cancer research, immunology, infectious diseases, microbiology and other fields. This Primer describes the basic and advanced concepts of CRISPR screening and its application as a flexible and reliable method for biological discovery, biomedical research and drug development - with a special emphasis on high-content methods that make it possible to obtain detailed biological insights directly as part of the screen.

2.
Science ; 365(6455): 786-793, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31395745

RESUMO

How cellular and organismal complexity emerges from combinatorial expression of genes is a central question in biology. High-content phenotyping approaches such as Perturb-seq (single-cell RNA-sequencing pooled CRISPR screens) present an opportunity for exploring such genetic interactions (GIs) at scale. Here, we present an analytical framework for interpreting high-dimensional landscapes of cell states (manifolds) constructed from transcriptional phenotypes. We applied this approach to Perturb-seq profiling of strong GIs mined from a growth-based, gain-of-function GI map. Exploration of this manifold enabled ordering of regulatory pathways, principled classification of GIs (e.g., identifying suppressors), and mechanistic elucidation of synergistic interactions, including an unexpected synergy between CBL and CNN1 driving erythroid differentiation. Finally, we applied recommender system machine learning to predict interactions, facilitating exploration of vastly larger GI manifolds.


Assuntos
Epistasia Genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Apoptose/genética , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Células Eritroides/citologia , Eritropoese/genética , Feminino , Perfilação da Expressão Gênica , Granulócitos/citologia , Humanos , Proteínas dos Microfilamentos/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Calponinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA