Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185963

RESUMO

Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here we performed detailed clinicopathologic, genomic and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis - massive, localized chromosome shattering - recurrently involving chromosomes 11 or 12, and resulting in extrachromosomal (ecDNA) amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively. Uniquely, these clinically aggressive tumors exhibited genomic and pathologic links to pulmonary carcinoids, suggesting a previously uncharacterized mode of SCLC pathogenesis via transformation from lower-grade neuroendocrine tumors or their progenitors. Conversely, SCLC in never-smokers harboring inactivated RB1 and TP53 exhibited hallmarks of adenocarcinoma-to-SCLC derivation, supporting two distinct pathways of plasticity-mediated pathogenesis of SCLC in never-smokers.

2.
NPJ Precis Oncol ; 8(1): 34, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355834

RESUMO

Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.

3.
Clin Cancer Res ; 29(13): 2445-2455, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36862133

RESUMO

PURPOSE: To overcome barriers to genomic testing for patients with rare cancers, we initiated a program to offer free clinical tumor genomic testing worldwide to patients with select rare cancer subtypes. EXPERIMENTAL DESIGN: Patients were recruited through social media outreach and engagement with disease-specific advocacy groups, with a focus on patients with histiocytosis, germ cell tumors (GCT), and pediatric cancers. Tumors were analyzed using the MSK-IMPACT next-generation sequencing assay with the return of results to patients and their local physicians. Whole-exome recapture was performed for female patients with GCTs to define the genomic landscape of this rare cancer subtype. RESULTS: A total of 333 patients were enrolled, and tumor tissue was received for 288 (86.4%), with 250 (86.8%) having tumor DNA of sufficient quality for MSK-IMPACT testing. Eighteen patients with histiocytosis have received genomically guided therapy to date, of whom 17 (94%) have had clinical benefit with a mean treatment duration of 21.7 months (range, 6-40+). Whole-exome sequencing of ovarian GCTs identified a subset with haploid genotypes, a phenotype rarely observed in other cancer types. Actionable genomic alterations were rare in ovarian GCT (28%); however, 2 patients with ovarian GCTs with squamous transformation had high tumor mutational burden, one of whom had a complete response to pembrolizumab. CONCLUSIONS: Direct-to-patient outreach can facilitate the assembly of cohorts of rare cancers of sufficient size to define their genomic landscape. By profiling tumors in a clinical laboratory, results could be reported to patients and their local physicians to guide treatment. See related commentary by Desai and Subbiah, p. 2339.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Neoplasias Ovarianas , Humanos , Feminino , Mutação , Genômica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Exoma
4.
Nat Commun ; 13(1): 7182, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36418296

RESUMO

The association between loss of BRCA1/2 and a homologous recombination deficiency phenotype is lineage dependent. In BRCA-associated cancers such as breast, ovarian, pancreas and prostate, this phenotype confers sensitivity to PARP inhibitors and platinum-therapies. Somatic reversion mutations restoring BRCA1/2 function mediate resistance, and have exclusively been reported in BRCA-associated tumors. In this study, we analyze matched tumor and normal sequencing from 31,927 patients and identify 846 (2.7%) patients with germline BRCA1/2 variants across 43 different cancer types, including 11 with somatic reversion mutations. While nine are in BRCA-associated tumors, we find two reversion mutations in non-BRCA-associated histologies, namely lung and esophagogastric adenocarcinomas. Both were detected following platinum therapy. Whole exome sequencing confirms the homologous recombination deficiency phenotype of these tumors. While reversion mutations arise in all BRCA-associated cancer types, here we show that reversion mutations arising post-platinum in non-BRCA associated histologies, while rare, may indicate BRCA1/2 mediated tumorigenesis.


Assuntos
Adenocarcinoma , Platina , Humanos , Masculino , Proteína BRCA1/genética , Células Germinativas , Mutação , Fenótipo , Proteína BRCA2/genética
5.
Cell Rep ; 31(12): 107782, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579914

RESUMO

Tumor cells are characterized by unlimited proliferation and perturbed differentiation. Using single-cell RNA sequencing, we demonstrate that tumor cells in medulloblastoma (MB) retain their capacity to differentiate in a similar way as their normal originating cells, cerebellar granule neuron precursors. Once they differentiate, MB cells permanently lose their proliferative capacity and tumorigenic potential. Differentiated MB cells highly express NeuroD1, a helix-loop-helix transcription factor, and forced expression of NeuroD1 promotes the differentiation of MB cells. The expression of NeuroD1 in bulk MB cells is repressed by trimethylation of histone 3 lysine-27 (H3K27me3). Inhibition of the histone lysine methyltransferase EZH2 prevents H3K27 trimethylation, resulting in increased NeuroD1 expression and enhanced differentiation in MB cells, which consequently reduces tumor growth. These studies reveal the mechanisms underlying MB cell differentiation and provide rationales to treat MB (potentially other malignancies) by stimulating tumor cell differentiation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas Hedgehog/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Receptor Patched-1/metabolismo , Transdução de Sinais , Análise de Célula Única
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA