Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Clin Nutr ; 74(9): 1345-1353, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32404903

RESUMO

BACKGROUND/OBJECTIVES: We aimed to investigate the effects of short-term hypocaloric diet-induced weight loss on DNA methylation profile in leukocytes from women with severe obesity. METHODS: Eleven women with morbid obesity (age: 36.9 ± 10.3 years; BMI: 58.5 ± 10.5 kg/m2) were assessed before and after 6 weeks of a hypocaloric dietary intervention. The participants were compared with women of average weight and the same age (age: 36.9 ± 11.8 years; BMI: 22.5 ± 1.6 kg/m2). Genome-wide DNA methylation analysis was performed in DNA extracted from peripheral blood leukocytes using the Infinium Human Methylation 450 BeadChip assay. Changes (Δß) in the methylation level of each CpGs were calculated. A threshold with a minimum value of 10%, p < 0.001, for the significant CpG sites based on Δß and a false discovery rate of <0.05 was set. RESULTS: Dietary intervention changed the methylation levels at 16,064 CpG sites. These CpGs sites were related to cancer, cell cycle-related, MAPK, Rap1, and Ras signaling pathways. However, regardless of hypocaloric intervention, a group of 878 CpGs (related to 649 genes) remained significantly altered in obese women when compared with normal-weight women. Pathway enrichment analysis identified genes related to the cadherin and Wnt pathway, angiogenesis signaling, and p53 pathways by glucose deprivation. CONCLUSION: A short-term hypocaloric intervention in patients with severe obesity partially restored the obesity-related DNA methylation pattern. Thus, the full change of obesity-related DNA methylation patterns could be proportional to the weight-loss rate in these patients after dietary interventions.


Assuntos
Metilação de DNA , Obesidade Mórbida , Adulto , Dieta Redutora , Feminino , Humanos , Pessoa de Meia-Idade , Obesidade/genética , Obesidade Mórbida/genética , Redução de Peso/genética
2.
Sci Rep ; 10(1): 6515, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296077

RESUMO

DNA methylation could provide a link between environmental, genetic factors and weight control and can modify gene expression pattern. This study aimed to identify genes, which are differentially expressed and methylated depending on adiposity state by evaluating normal weight women and obese women before and after bariatric surgery (BS). We enrolled 24 normal weight (BMI: 22.5 ± 1.6 kg/m2) and 24 obese women (BMI: 43.3 ± 5.7 kg/m2) submitted to BS. Genome-wide methylation analysis was conducted using Infinium Human Methylation 450 BeadChip (threshold for significant CpG sites based on delta methylation level with a minimum value of 5%, a false discovery rate correction (FDR) of q < 0.05 was applied). Expression levels were measured using HumanHT-12v4 Expression BeadChip (cutoff of p ≤ 0.05 and fold change ≥2.0 was used to detect differentially expressed probes). The integrative analysis of both array data identified four genes (i.e. TPP2, PSMG6, ARL6IP1 and FAM49B) with higher methylation and lower expression level in pre-surgery women compared to normal weight women: and two genes (i.e. ZFP36L1 and USP32) that were differentially methylated after BS. These methylation changes were in promoter region and gene body. All genes are related to MAPK cascade, NIK/NF-kappaB signaling, cellular response to insulin stimulus, proteolysis and others. Integrating analysis of DNA methylation and gene expression evidenced that there is a set of genes relevant to obesity that changed after BS. A gene ontology analysis showed that these genes were enriched in biological functions related to adipogenesis, orexigenic, oxidative stress and insulin metabolism pathways. Also, our results suggest that although methylation plays a role in gene silencing, the majority of effects were not correlated.


Assuntos
Adiposidade/genética , Cirurgia Bariátrica , Metilação de DNA , Obesidade/genética , Transcriptoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Aminopeptidases/genética , Aminopeptidases/metabolismo , Fator 1 de Resposta a Butirato/genética , Fator 1 de Resposta a Butirato/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Obesidade/cirurgia , Período Pós-Operatório , Período Pré-Operatório , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA