Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 54(12): 1786-1794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411364

RESUMO

Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-ß precursor protein processing, amyloid-ß aggregation, lipid metabolism and microglial function in AD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Adenosina Trifosfatases , Doença de Alzheimer , Exossomos , Humanos , Adenosina Trifosfatases/genética , Doença de Alzheimer/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Exossomos/genética
2.
BMC Med Genet ; 15: 70, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24956927

RESUMO

BACKGROUND: Familial hypercholesterolaemia (FH) is a common Mendelian condition which, untreated, results in premature coronary heart disease. An estimated 88% of FH cases are undiagnosed in the UK. We previously validated a method for FH mutation detection in a lipid clinic population using next generation sequencing (NGS), but this did not address the challenge of identifying index cases in primary care where most undiagnosed patients receive healthcare. Here, we evaluate the targeted use of NGS as a potential route to diagnosis of FH in a primary care population subset selected for hypercholesterolaemia. METHODS: We used microfluidics-based PCR amplification coupled with NGS and multiplex ligation-dependent probe amplification (MLPA) to detect mutations in LDLR, APOB and PCSK9 in three phenotypic groups within the Generation Scotland: Scottish Family Health Study including 193 individuals with high total cholesterol, 232 with moderately high total cholesterol despite cholesterol-lowering therapy, and 192 normocholesterolaemic controls. RESULTS: Pathogenic mutations were found in 2.1% of hypercholesterolaemic individuals, in 2.2% of subjects on cholesterol-lowering therapy and in 42% of their available first-degree relatives. In addition, variants of uncertain clinical significance (VUCS) were detected in 1.4% of the hypercholesterolaemic and cholesterol-lowering therapy groups. No pathogenic variants or VUCS were detected in controls. CONCLUSIONS: We demonstrated that population-based genetic testing using these protocols is able to deliver definitive molecular diagnoses of FH in individuals with high cholesterol or on cholesterol-lowering therapy. The lower cost and labour associated with NGS-based testing may increase the attractiveness of a population-based approach to FH detection compared to genetic testing with conventional sequencing. This could provide one route to increasing the present low percentage of FH cases with a genetic diagnosis.


Assuntos
Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/genética , Adulto , Idoso , Análise Mutacional de DNA , Feminino , Testes Genéticos/métodos , Humanos , Hiperlipoproteinemia Tipo II/epidemiologia , Masculino , Pessoa de Meia-Idade , Mutação , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Receptores de LDL/genética , Escócia/epidemiologia , Serina Endopeptidases/genética
3.
Genet Med ; 15(12): 948-57, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23680767

RESUMO

PURPOSE: Familial hypercholesterolemia is a common Mendelian disorder associated with early-onset coronary heart disease that can be treated by cholesterol-lowering drugs. The majority of cases in the United Kingdom are currently without a molecular diagnosis, which is partly due to the cost and time associated with standard screening techniques. The main purpose of this study was to test the sensitivity and specificity of two next-generation sequencing protocols for genetic diagnosis of familial hypercholesterolemia. METHODS: Libraries were prepared for next-generation sequencing by two target enrichment protocols; one using the SureSelect Target Enrichment System and the other using the PCR-based Access Array platform. RESULTS: In the validation cohort, both protocols showed 100% specificity, whereas the sensitivity for short variant detection was 100% for the SureSelect Target Enrichment and 98% for the Access Array protocol. Large deletions/duplications were only detected using the SureSelect Target Enrichment protocol. In the prospective cohort, the mutation detection rate using the Access Array was highest in patients with clinically definite familial hypercholesterolemia (67%), followed by patients with possible familial hypercholesterolemia (26%). CONCLUSION: We have shown the potential of target enrichment methods combined with next-generation sequencing for molecular diagnosis of familial hypercholesterolemia. Adopting these assays for patients with suspected familial hypercholesterolemia could improve cost-effectiveness and increase the overall number of patients with a molecular diagnosis.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Hiperlipoproteinemia Tipo II/diagnóstico , Técnicas de Diagnóstico Molecular , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Hiperlipoproteinemia Tipo II/genética , Pessoa de Meia-Idade , Taxa de Mutação , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA , Adulto Jovem
4.
Nat Genet ; 39(6): 721-3, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17529978

RESUMO

Naturally occurring variation in gene copy number is increasingly recognized as a heritable source of susceptibility to genetically complex diseases. Here we report strong association between FCGR3B copy number and risk of systemic lupus erythematosus (P = 2.7 x 10(-8)), microscopic polyangiitis (P = 2.9 x 10(-4)) and Wegener's granulomatosis in two independent cohorts from the UK (P = 3 x 10(-3)) and France (P = 1.1 x 10(-4)). We did not observe this association in the organ-specific Graves' disease or Addison's disease. Our findings suggest that low FCGR3B copy number, and in particular complete FCGR3B deficiency, has a key role in the development of systemic autoimmunity.


Assuntos
Antígenos CD/genética , Doenças Autoimunes/genética , Autoimunidade/genética , Dosagem de Genes , Predisposição Genética para Doença , Granulomatose com Poliangiite/genética , Lúpus Eritematoso Sistêmico/genética , Receptores de IgG/genética , Doenças Autoimunes/epidemiologia , Suscetibilidade a Doenças , França/epidemiologia , Proteínas Ligadas por GPI , Genótipo , Granulomatose com Poliangiite/epidemiologia , Humanos , Lúpus Eritematoso Sistêmico/epidemiologia , Reino Unido/epidemiologia
5.
Mamm Genome ; 13(4): 194-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11956762

RESUMO

The spontaneously hypertensive rat (SHR) is a model of human essential hypertension. Increased blood pressure in SHR is associated with other risk factors associated with cardiovascular disease, including insulin resistance and dyslipidemia. DNA microarray studies identified over 200 differentially expressed genes and ESTs between SHR and normotensive control rats. These clones represent candidate genes that may underlie previously detected QTLs in SHR. This study made use of the publication of two whole-genome maps to identify positional QTL candidates. Radiation hybrid (RH) mapping was used to determine the chromosomal locations of 70 rat genes and ESTs from this dataset. Most of the locations are novel, but in five cases we identified a definitive map location for genes previously mapped by somatic cell hybrids and/or linkage analysis. Genes for which the mouse genome map location was already determined mapped to syntenic segments in the rat genome map, except for two rat genes whose map locations confirmed previous findings. Where synteny comparisons could be made only with the human, 74% of the genes mapped in this study lay in a conserved syntenic segment. Chromosomal localisation of these mouse and human orthologs to syntenic segments produces a high level of confidence in the data presented in this study. The data provide new map locations for rat genes and will aid efforts to advance the rat genome map. The data may also be used to prioritize candidate QTL genes in SHR and other rat strains on the basis of their map location.


Assuntos
Genoma , Mapeamento de Híbridos Radioativos , Animais , Modelos Animais de Doenças , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA