RESUMO
CpG site methylation patterns have potential to improve differentiation of high-grade screening-detected cervical abnormalities. We assessed CpG differential methylation (DM) and differential variability (DV) in high-grade (CIN2+) vs. low-grade (≤CIN1) lesions. In ≤CIN1 (n=117) and CIN2+ (n=31) samples, cervical sample DNA underwent testing with Illumina HumanMethylation arrays. We assessed DM and DV of CpG methylation M values among nine cervical cancer-associated genes. We fit CpG-specific linear models and estimated empirical Bayes standard errors and false discovery rates (FDR). An exploratory epigenome-wide association study (EWAS) aimed to detect novel DM and DV CpGs (FDR<0.05) and Gene Ontology (GO) term enrichment. Compared to ≤CIN1, CIN2+ exhibited greater methylation at CCNA1 Cluster 1 (M value difference 0.24; 95% CI 0.04, 0.43) and RARB Cluster 2 (0.16; 95% CI 0.05, 0.28), and lower methylation at CDH1 Cluster 1 (-0.15; 95% CI -0.26, -0.04). CIN2+ exhibited lower variability at CDH1 Cluster 2 (variation difference -0.24; 95% CI -0.41, -0.05) and FHIT Cluster 1 (-0.30; 95% CI -0.50, -0.09). EWAS detected 3,534 DM and 270 DV CpGs. Forty-four GO terms were enriched with DM CpGs related to transcriptional, structural, developmental, and neuronal processes. Methylation patterns may help triage screening-detected cervical abnormalities and inform US screening algorithms.
RESUMO
BACKGROUND: Primary congenital glaucoma (PCG) affects approximately 1 in 10,000 live born infants in the United States (U.S.). PCG has a autosomal recessive inheritance pattern, and variable expressivity and reduced penetrance have been reported. Likely causal variants in the most commonly mutated gene, CYP1B1, are less prevalent in the U.S., suggesting that alternative genes may contribute to the condition. This study utilized exome sequencing to investigate the genetic architecture of PCG in the U.S. and to identify novel genes and variants. METHODS: We studied 37 family trios where infants had PCG and were part of the National Birth Defects Prevention Study (births 1997-2011), a U.S. multicenter study of birth defects. Samples underwent exome sequencing and sequence reads were aligned to the human reference sample (NCBI build 37/hg19). Variant filtration was conducted under de novo and Mendelian inheritance models using GEMINI. RESULTS: Among candidate variants, CYP1B1 was most represented (five trios, 13.5%). Twelve probands (32%) had potentially pathogenic variants in other genes not previously linked to PCG but important in eye development and/or to underlie Mendelian conditions with potential phenotypic overlap (e.g., CRYBB2, RXRA, GLI2). CONCLUSION: Variation in the genes identified in this population-based study may help to further explain the genetics of PCG.
Assuntos
Citocromo P-450 CYP1B1 , Sequenciamento do Exoma , Exoma , Glaucoma , Humanos , Glaucoma/genética , Glaucoma/congênito , Citocromo P-450 CYP1B1/genética , Feminino , Masculino , Sequenciamento do Exoma/métodos , Estados Unidos , Exoma/genética , Mutação/genética , Predisposição Genética para Doença , Lactente , Recém-NascidoRESUMO
Clonal hematopoiesis of indeterminate potential (CHIP) arises from aging-associated acquired mutations in hematopoietic progenitors, which display clonal expansion and produce phenotypically altered leukocytes. We associated CHIP-DNMT3A mutations with a higher prevalence of periodontitis and gingival inflammation among 4,946 community-dwelling adults. To model DNMT3A-driven CHIP, we used mice with the heterozygous loss-of-function mutation R878H, equivalent to the human hotspot mutation R882H. Partial transplantation with Dnmt3aR878H/+ bone marrow (BM) cells resulted in clonal expansion of mutant cells into both myeloid and lymphoid lineages and an elevated abundance of osteoclast precursors in the BM and osteoclastogenic macrophages in the periphery. DNMT3A-driven clonal hematopoiesis in recipient mice promoted naturally occurring periodontitis and aggravated experimentally induced periodontitis and arthritis, associated with enhanced osteoclastogenesis, IL-17-dependent inflammation and neutrophil responses, and impaired regulatory T cell immunosuppressive activity. DNMT3A-driven clonal hematopoiesis and, subsequently, periodontitis were suppressed by rapamycin treatment. DNMT3A-driven CHIP represents a treatable state of maladaptive hematopoiesis promoting inflammatory bone loss.
Assuntos
Hematopoiese Clonal , DNA (Citosina-5-)-Metiltransferases , DNA Metiltransferase 3A , Periodontite , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Camundongos , Hematopoiese Clonal/genética , Humanos , Periodontite/genética , Periodontite/patologia , Mutação , Masculino , Feminino , Inflamação/genética , Inflamação/patologia , Osteoclastos/metabolismo , Camundongos Endogâmicos C57BL , Adulto , Interleucina-17/metabolismo , Interleucina-17/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Hematopoese/genética , Osteogênese/genética , Células-Tronco Hematopoéticas/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Pessoa de Meia-IdadeRESUMO
Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.
Assuntos
Aberrações Cromossômicas , Hematopoiese Clonal , Mosaicismo , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla , Janus Quinase 2/genética , Telomerase/genética , Telomerase/metabolismo , Perda de Heterozigosidade , Estudos Transversais , Mutação , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Polimorfismo de Nucleotídeo Único , IdosoRESUMO
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Inflamação , Medicina de Precisão , Sequenciamento Completo do Genoma , Humanos , Medicina de Precisão/métodos , Inflamação/genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Predisposição Genética para Doença , Feminino , Interleucina-6/genéticaRESUMO
BACKGROUND: Higher 25-hydroxyvitamin D (25(OH)D) concentrations in serum has a positive association with pulmonary function. Investigating genome-wide interactions with 25(OH)D may reveal new biological insights into pulmonary function. OBJECTIVES: We aimed to identify novel genetic variants associated with pulmonary function by accounting for 25(OH)D interactions. METHODS: We included 211,264 participants from the observational United Kingdom Biobank study with pulmonary function tests (PFTs), genome-wide genotypes, and 25(OH)D concentrations from 4 ancestral backgrounds-European, African, East Asian, and South Asian. Among PFTs, we focused on forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) because both were previously associated with 25(OH)D. We performed genome-wide association study (GWAS) analyses that accounted for variant×25(OH)D interaction using the joint 2 degree-of-freedom (2df) method, stratified by participants' smoking history and ancestry, and meta-analyzed results. We evaluated interaction effects to determine how variant-PFT associations were modified by 25(OH)D concentrations and conducted pathway enrichment analysis to examine the biological relevance of our findings. RESULTS: Our GWAS meta-analyses, accounting for interaction with 25(OH)D, revealed 30 genetic variants significantly associated with FEV1 or FVC (P2df <5.00×10-8) that were not previously reported for PFT-related traits. These novel variant signals were enriched in lung function-relevant pathways, including the p38 MAPK pathway. Among variants with genome-wide-significant 2df results, smoking-stratified meta-analyses identified 5 variants with 25(OH)D interactions that influenced FEV1 in both smoking groups (never smokers P1df interaction<2.65×10-4; ever smokers P1df interaction<1.71×10-5); rs3130553, rs2894186, rs79277477, and rs3130929 associations were only evident in never smokers, and the rs4678408 association was only found in ever smokers. CONCLUSION: Genetic variant associations with lung function can be modified by 25(OH)D, and smoking history can further modify variant×25(OH)D interactions. These results expand the known genetic architecture of pulmonary function and add evidence that gene-environment interactions, including with 25(OH)D and smoking, influence lung function.
Assuntos
Estudo de Associação Genômica Ampla , Pulmão , Testes de Função Respiratória , Vitamina D , Humanos , Volume Expiratório Forçado , Loci Gênicos , Pulmão/fisiologia , Polimorfismo de Nucleotídeo Único , Reino Unido , Capacidade Vital/genética , Vitamina D/análogos & derivados , Vitamina D/sangue , Biobanco do Reino UnidoRESUMO
OBJECTIVE: Colonic diverticulosis is a prevalent condition among older adults, marked by the presence of thin-walled pockets in the colon wall that can become inflamed, infected, haemorrhage or rupture. We present a case-control genetic and transcriptomic study aimed at identifying the genetic and cellular determinants underlying this condition and the relationship with other gastrointestinal disorders. DESIGN: We conducted DNA and RNA sequencing on colonic tissue from 404 patients with (N=172) and without (N=232) diverticulosis. We investigated variation in the transcriptome associated with diverticulosis and further integrated this variation with single-cell RNA-seq data from the human intestine. We also integrated our expression quantitative trait loci with genome-wide association study using Mendelian randomisation (MR). Furthermore, a Polygenic Risk Score analysis gauged associations between diverticulosis severity and other gastrointestinal disorders. RESULTS: We discerned 38 genes with differential expression and 17 with varied transcript usage linked to diverticulosis, indicating tissue remodelling as a primary diverticula formation mechanism. Diverticula formation was primarily linked to stromal and epithelial cells in the colon including endothelial cells, myofibroblasts, fibroblasts, goblet, tuft, enterocytes, neurons and glia. MR highlighted five genes including CCN3, CRISPLD2, ENTPD7, PHGR1 and TNFSF13, with potential causal effects on diverticulosis. Notably, ENTPD7 upregulation was confirmed in diverticulosis cases. Additionally, diverticulosis severity was positively correlated with genetic predisposition to diverticulitis. CONCLUSION: Our results suggest that tissue remodelling is a primary mechanism for diverticula formation. Individuals with an increased genetic proclivity to diverticulitis exhibit a larger numbers of diverticula on colonoscopy.
Assuntos
Diverticulose Cólica , Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Diverticulose Cólica/genética , Masculino , Feminino , Idoso , Estudos de Casos e Controles , Pessoa de Meia-Idade , Locos de Características Quantitativas , Análise da Randomização Mendeliana , Predisposição Genética para DoençaRESUMO
Metabolic dysfunction-associated steatotic liver disease (MASLD) prevalence is increasing in parallel with an obesity pandemic, calling for novel strategies for prevention and treatment. We defined a circulating proteome of human MASLD across ≈7000 proteins in ≈5000 individuals from diverse, at-risk populations across the metabolic health spectrum, demonstrating reproducible diagnostic performance and specifying both known and novel metabolic pathways relevant to MASLD (central carbon and amino acid metabolism, hepatocyte regeneration, inflammation, fibrosis, insulin sensitivity). A parsimonious proteomic signature of MASLD was associated with a protection from MASLD and its related multi-system metabolic consequences in >26000 free-living individuals, with an additive effect to polygenic risk. The MASLD proteome was encoded by genes that demonstrated transcriptional enrichment in liver, with spatial transcriptional activity in areas of steatosis in human liver biopsy and dynamicity for select targets in human liver across stages of steatosis. We replicated several top relations from proteomics and spatial tissue transcriptomics in a humanized "liver-on-a-chip" model of MASLD, highlighting the power of a full translational approach to discovery in MASLD. Collectively, these results underscore utility of blood-based proteomics as a dynamic "liquid biopsy" of human liver relevant to clinical biomarker and mechanistic applications.
RESUMO
BACKGROUND: Methylation levels may be associated with and serve as markers to predict risk of progression of precancerous cervical lesions. We conducted an epigenome-wide association study (EWAS) of CpG methylation and progression to high-grade cervical intraepithelial neoplasia (CIN2 +) following an abnormal screening test. METHODS: A prospective US cohort of 289 colposcopy patients with normal or CIN1 enrollment histology was assessed. Baseline cervical sample DNA was analyzed using Illumina HumanMethylation 450K (n = 76) or EPIC 850K (n = 213) arrays. Participants returned at provider-recommended intervals and were followed up to 5 years via medical records. We assessed continuous CpG M values for 9 cervical cancer-associated genes and time-to-progression to CIN2+. We estimated CpG-specific time-to-event ratios (TTER) and hazard ratios using adjusted, interval-censored Weibull accelerated failure time models. We also conducted an exploratory EWAS to identify novel CpGs with false discovery rate (FDR) < 0.05. RESULTS: At enrollment, median age was 29.2 years; 64.0% were high-risk HPV-positive, and 54.3% were non-white. During follow-up (median 24.4 months), 15 participants progressed to CIN2+. Greater methylation levels were associated with a shorter time-to-CIN2+ for CADM1 cg03505501 (TTER = 0.28; 95%CI 0.12, 0.63; FDR = 0.03) and RARB Cluster 1 (TTER = 0.46; 95% CI 0.29, 0.71; FDR = 0.01). There was evidence of similar trends for DAPK1 cg14286732, PAX1 cg07213060, and PAX1 Cluster 1. The EWAS detected 336 novel progression-associated CpGs, including those located in CpG islands associated with genes FGF22, TOX, COL18A1, GPM6A, XAB2, TIMP2, GSPT1, NR4A2, and APBB1IP. CONCLUSIONS: Using prospective time-to-event data, we detected associations between CADM1-, DAPK1-, PAX1-, and RARB-related CpGs and cervical disease progression, and we identified novel progression-associated CpGs. IMPACT: Methylation levels at novel CpG sites may help identify individuals with ≤CIN1 histology at higher risk of progression to CIN2+ and inform risk-based cervical cancer screening guidelines.
Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Estados Unidos , Adulto , Neoplasias do Colo do Útero/patologia , Estudos Prospectivos , Epigenoma , Detecção Precoce de Câncer , Metilação de DNA , Displasia do Colo do Útero/diagnóstico , Infecções por Papillomavirus/complicações , Papillomaviridae/genética , Molécula 1 de Adesão Celular/genéticaRESUMO
BACKGROUND: The branched chain amino acids (BCAA) leucine, isoleucine, and valine are essential nutrients that have been associated with diabetes, cancers, and cardiovascular diseases. Observational studies suggest that BCAAs exert homogeneous phenotypic effects, but these findings are inconsistent with results from experimental human and animal studies. METHODS: Hypothesizing that inconsistencies between observational and experimental BCAA studies reflect bias from shared lifestyle and genetic factors in observational studies, we used data from the UK Biobank and applied multivariable Mendelian randomization causal inference methods designed to address these biases. RESULTS: In n = 97,469 participants of European ancestry (mean age = 56.7 years; 54.1% female), we estimate distinct and often opposing total causal effects for each BCAA. For example, of the 117 phenotypes with evidence of a statistically significant total causal effect for at least one BCAA, almost half (44%, n = 52) are associated with only one BCAA. These 52 associations include total causal effects of valine on diabetic eye disease [odds ratio = 1.51, 95% confidence interval (CI) = 1.31, 1.76], valine on albuminuria (odds ratio = 1.14, 95% CI = 1.08, 1.20), and isoleucine on angina (odds ratio = 1.17, 95% CI = 1.31, 1.76). CONCLUSIONS: Our results suggest that the observational literature provides a flawed picture of BCAA phenotypic effects that is inconsistent with experimental studies and could mislead efforts developing novel therapeutics. More broadly, these findings motivate the development and application of causal inference approaches that enable 'omics studies conducted in observational settings to account for the biasing effects of shared genetic and lifestyle factors.
The three branched chain amino acids (BCAAs) leucine, isoleucine, and valine are important building blocks of muscle proteins that are obtained from the diet. Many studies in human populations have examined whether BCAAs affect health and disease. These human studies report results that are inconsistent with results from highly controlled animal studies. Because interest in the therapeutic targeting of BCAAs is growing, we wanted to better understand these discrepancies. Briefly, we used data from a large database that captured many diseases (e.g., cardiovascular disease, cancers, and respiratory disease) and new statistical methods. Our results showed that discrepancies between human studies and animal studies may reflect errors in the ways human studies were designed and conducted. As a result, these human studies may provide a flawed picture of BCAA effects that could mislead efforts developing novel therapeutics.
RESUMO
Minority populations are largely absent from clinical research trials. The neglect of these populations has become increasingly apparent, with escalating cancer burdens and chronic disease. The challenges to recruitment of minorities in the United States are multiple including trust or lack thereof. Keys to successful recruitment are responding to community issues, its history, beliefs, and its social and economic pressures. The strategy we have used in many low-income, sometimes remote, communities is to recruit staff from the same community and train them in the required basic research methods. They are the first line of communication. After our arrival in the Texas Rio Grande Valley in 2001, we applied these principles learned over years of global research, to studies of chronic diseases. Beginning in 2004, we recruited and trained a team of local women who enrolled in a cohort of over five thousand Mexican Americans from randomly selected households. This cohort is being followed, and the team has remained, acquiring not only advanced skills (ultrasound, FibroScan, retinal photos, measures of cognition, etc.) but capacity to derive key health information. Currently, we are participating in multiple funded studies, including an NIH clinical trial, liver disease, obesity, and diabetes using multiomics aimed at developing precision medicine approaches to chronic disease prevention and treatment.
RESUMO
BACKGROUND: Adipokines are hormones secreted from adipose tissue and are associated with cardiometabolic diseases (CMD). Functional differences between adipokines (leptin, adiponectin, and resistin) are known, but inconsistently reported associations with CMD and lack of studies in Hispanic populations are research gaps. We investigated the relationship between subclinical atherosclerosis and multiple adipokine measures. METHODS: Cross-sectional data from the Cameron County Hispanic Cohort (N = 624; mean age = 50; Female = 70.8%) were utilized to assess associations between adipokines [continuous measures of adiponectin, leptin, resistin, leptin-to-adiponectin ratio (LAR), and adiponectin-resistin index (ARI)] and early atherosclerosis [carotid-intima media thickness (cIMT)]. We adjusted for sex, age, body mass index (BMI), smoking status, cytokines, fasting blood glucose levels, blood pressure, lipid levels, and medication usage in the fully adjusted linear regression model. We conducted sexes-combined and sex-stratified analyses to account for sex-specificity and additionally tested whether stratification of participants by their metabolic status (metabolically elevated risk for CMD as defined by having two or more of the following conditions: hypertension, dyslipidemia, insulin resistance, and inflammation vs. not) influenced the relationship between adipokines and cIMT. RESULTS: In the fully adjusted analyses, adiponectin, leptin, and LAR displayed significant interaction by sex (p < 0.1). Male-specific associations were between cIMT and LAR [ß(SE) = 0.060 (0.016), p = 2.52 × 10-4], and female-specific associations were between cIMT and adiponectin [ß(SE) = 0.010 (0.005), p = 0.043] and ARI [ß(SE) = - 0.011 (0.005), p = 0.036]. When stratified by metabolic health status, the male-specific positive association between LAR and cIMT was more evident among the metabolically healthy group [ß(SE) = 0.127 (0.015), p = 4.70 × 10-10] (p for interaction by metabolic health < 0.1). However, the female-specific associations between adiponectin and cIMT and ARI and cIMT were observed only among the metabolically elevated risk group [ß(SE) = 0.014 (0.005), p = 0.012 for adiponectin; ß(SE) = - 0.015 (0.006), p = 0.013 for ARI; p for interaction by metabolic health < 0.1]. CONCLUSION: Associations between adipokines and cIMT were sex-specific, and metabolic health status influenced the relationships between adipokines and cIMT. These heterogeneities by sex and metabolic health affirm the complex relationships between adipokines and atherosclerosis.
Assuntos
Adipocinas , Aterosclerose , Feminino , Masculino , Humanos , Pessoa de Meia-Idade , Leptina , Resistina , Adiponectina , Espessura Intima-Media Carotídea , Estudos Transversais , Hispânico ou LatinoRESUMO
BACKGROUND: Gut microbiota may influence metabolic pathways related to chronic health conditions. Evidence for physical activity and diet influences on gut microbial composition exists, but data from diverse population-based cohort studies are limited. OBJECTIVES: We hypothesized that gut microbial diversity and genera are associated with physical activity and diet quality. METHODS: Data were from 537 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a prospective cohort, who attended the year 30 follow-up examination (2015-2016; aged 47-61 y; 45% Black race/55% White race; 45% men/55% women). The 16S ribosomal RNA marker gene was sequenced from stool DNA, and genus-level taxonomy was assigned. Within-person microbial diversity (α-diversity) was assessed with Shannon diversity index and richness scores; between-person diversity (ß-diversity) measures were generated with principal coordinates analysis (PCoA). Current and long-term physical activity and diet quality measures were derived from data collected over 30 y of follow-up. Multivariable-adjusted regression analysis controlled for: sociodemographic variables (age, race, sex, education, and field center), other health behaviors (smoking, alcohol consumption, and medication use), and adjusted for multiple comparisons with the false discovery rate (<0.20). RESULTS: Based on PCoA ß-diversity, participants' microbial community compositions differed significantly (P < 0.001), with respect to both current and long-term physical activity and diet quality. α-Diversity was associated only with current physical activity (positively) in multivariable-adjusted analysis. Multiple genera (n = 45) were associated with physical activity and fewer with diet (n = 5), including positive associations with Lachnospiraceae UCG-001 and Ruminococcaceae IncertaeSedis with both behaviors. CONCLUSIONS: Physical activity and diet quality were associated with gut microbial composition among 537 participants in the CARDIA study. Multiple genera were associated with physical activity. Physical activity and diet quality were associated with genera consistent with pathways related to inflammation and short-chain fatty acid production.
Assuntos
Microbioma Gastrointestinal , Masculino , Humanos , Feminino , Adulto Jovem , Vasos Coronários , Estudos Prospectivos , Dieta , Exercício Físico , RNA Ribossômico 16S , FezesRESUMO
We report a genome-wide association study (GWAS) of coronary artery disease (CAD) incorporating nearly a quarter of a million cases, in which existing studies are integrated with data from cohorts of white, Black and Hispanic individuals from the Million Veteran Program. We document near equivalent heritability of CAD across multiple ancestral groups, identify 95 novel loci, including nine on the X chromosome, detect eight loci of genome-wide significance in Black and Hispanic individuals, and demonstrate that two common haplotypes at the 9p21 locus are responsible for risk stratification in all populations except those of African origin, in which these haplotypes are virtually absent. Moreover, in the largest GWAS for angiographically derived coronary atherosclerosis performed to date, we find 15 loci of genome-wide significance that robustly overlap with established loci for clinical CAD. Phenome-wide association analyses of novel loci and polygenic risk scores (PRSs) augment signals related to insulin resistance, extend pleiotropic associations of these loci to include smoking and family history, and precisely document the markedly reduced transferability of existing PRSs to Black individuals. Downstream integrative analyses reinforce the critical roles of vascular endothelial, fibroblast, and smooth muscle cells in CAD susceptibility, but also point to a shared biology between atherosclerosis and oncogenesis. This study highlights the value of diverse populations in further characterizing the genetic architecture of CAD.
Assuntos
Doença da Artéria Coronariana , Estudo de Associação Genômica Ampla , Doença da Artéria Coronariana/genética , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de RiscoRESUMO
BACKGROUND: High-risk human papillomavirus (hrHPV) testing is utilized in primary cervical cancer screening, generally along with cytology, to triage abnormalities to colposcopy. Most screening-based hrHPV testing involves pooled detection of any hrHPV or of HPV16/18. Cervical neoplasia progression risks based on extended hrHPV genotyping-particularly non-16/18 hrHPV types-are not well characterized. HPV genotype-specific incidence of high-grade cervical intraepithelial neoplasia or more severe (CIN2+) following an abnormal screening result was examined. METHODS: We assessed a US-based prospective, multiracial, clinical cohort of 343 colposcopy patients with normal histology (n = 226) or CIN1 (n = 117). Baseline cervical samples underwent HPV DNA genotyping, and participants were followed up to 5 years. Genotype-specific CIN2+ incidence rates (IR) were estimated with accelerated failure time models. Five-year CIN2+ risks were estimated nonparametrically for hierarchical hrHPV risk groups (HPV16; else HPV18/45; else HPV31/33/35/52/58; else HPV39/51/56/59/68). RESULTS: At enrollment, median participant age was 30.1 years; most (63%) were hrHPV-positive. Over follow-up, 24 participants progressed to CIN2+ (7.0%). CIN2+ IR among hrHPV-positive participants was 3.4/1,000 person-months. CIN2+ IRs were highest for HPV16 (8.3), HPV33 (7.8), and HPV58 (4.9). Five-year CIN2+ risk was higher for HPV16 (0.34) compared with HPV18/45 (0.12), HPV31/33/35/52/58 (0.12), and HPV39/51/56/59/68 (0.16) (P = 0.05). CONCLUSIONS: Non-16/18 hrHPV types are associated with differential CIN2+ progression rates. HPV16, 33, and 58 exhibited the highest rates over 5 years. HPV risk groups warrant further investigation in diverse US populations. IMPACT: These novel data assessing extended HPV genotyping in a diverse clinical cohort can inform future directions to improve screening practices in the general population.
Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Adulto , Detecção Precoce de Câncer , Feminino , Genótipo , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Humanos , Papillomaviridae/genética , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/genética , Estudos Prospectivos , Neoplasias do Colo do Útero/diagnósticoRESUMO
Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.
RESUMO
Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD.
RESUMO
BACKGROUND: Psychosocial stressors, such as perceived discrimination and depressive symptoms, may shorten telomeres and exacerbate aging-related illnesses. METHODS: Participants from the Jackson Heart Study at visit 1 (2000-2004) with LTL data and Center for Epidemiological Studies-Depression (CES-D) scores (n = 580 men, n = 910 women) were utilized. The dimensions of discrimination scores (everyday, lifetime, burden of lifetime, and stress from lifetime discrimination) were standardized and categorized as low, moderate, and high. Coping responses to everyday and lifetime discrimination were categorized as passive and active coping. Multivariable linear regression analyses were performed to estimate the mean difference (standard errors-SEs) in LTL by dimensions of discrimination and coping responses stratified by CES-D scores < 16 (low) and ≥ 16 (high) and sex. Covariates were age, education, waist circumference, smoking and CVD status. RESULTS: Neither everyday nor lifetime discrimination was associated with mean differences in LTL for men or women by levels of depressive symptoms. Burden of lifetime discrimination was marginally associated with LTL among women who reported low depressive symptoms after full adjustment (b = 0.11, SE = 0.06, p = 0.08). Passive coping with lifetime discrimination was associated with longer LTL among men who reported low depressive symptoms after full adjustment (b = 0.18, SE = 0.09, p < 0.05); and active coping with lifetime discrimination was associated with longer LTL among men who reported high depressive symptoms after full adjustment (b = 1.18, SE = 0.35, p < 0.05). CONCLUSIONS: The intersection of perceived discrimination and depressive symptomatology may be related to LTL, and the effects may vary by sex.
RESUMO
RATIONALE & OBJECTIVE: Obesity has been related to risk for chronic kidney disease. However, the associations of different measures of midlife obesity with long-term kidney function trajectories and whether they differ by sex and race are unknown. STUDY DESIGN: Observational study. SETTING & PARTICIPANTS: 13,496 participants from the Atherosclerosis Risk in Communities (ARIC) Study. PREDICTORS: Midlife obesity status as measured by body mass index (BMI), waist-to-hip ratio, and predicted percent fat at baseline. OUTCOMES: Estimated glomerular filtration rate (eGFR) calculated using serum creatinine level measured at 5 study visits, and incident kidney failure with replacement therapy (KFRT). ANALYTICAL APPROACH: Mixed models with random intercepts and random slopes for eGFR. Cox proportional hazards models for KFRT. RESULTS: Baseline mean age was 54 years, median eGFR was 103mL/min/1.73m2, and median BMI was 27kg/m2. Over 30 years of follow-up, midlife obesity measures were associated with eGFR decline in White and Black women but not consistently in men. Adjusted for age, center, smoking, and coronary heart disease, the differences in eGFR slope per 1-SD higher BMI, waist-to-hip ratio, and predicted percent fat were 0.09 (95% CI, -0.18 to 0.36), -0.25 (95% CI, -0.50 to 0.01), and-0.14 (95% CI, -0.41 to 0.13) mL/min/1.73m2 per decade for White men; -0.91 (95% CI, -1.15 to-0.67), -0.82 (95% CI, -1.06 to-0.58), and-1.02 (95% CI, -1.26 to-0.78) mL/min/1.73m2 per decade for White women; -0.70 (95% CI, -1.54 to 0.14), -1.60 (95% CI, -2.42 to-0.78), and-1.24 (95% CI, -2.08 to-0.40) mL/min/1.73m2 per decade for Black men; and-1.24 (95% CI, -2.08 to-0.40), -1.50 (95% CI, -2.05 to-0.95), and-1.43 (95% CI, -2.00 to-0.86) mL/min/1.73m2 per decade for Black women. Obesity indicators were independently associated with risk for KFRT for all sex-race groups except White men. LIMITATIONS: Loss to follow-up during 3 decades of follow-up with 5 eGFR assessments. CONCLUSIONS: Obesity status is a risk factor for future decline in kidney function and development of KFRT in Black and White women, with less consistent associations among men.
Assuntos
Taxa de Filtração Glomerular , Falência Renal Crônica/epidemiologia , Obesidade/epidemiologia , Negro ou Afro-Americano , Índice de Massa Corporal , Creatinina/sangue , Feminino , Humanos , Falência Renal Crônica/terapia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Terapia de Substituição Renal , Fatores Sexuais , Relação Cintura-Quadril , População BrancaRESUMO
BACKGROUND: Bioinformatic tools and genome-wide association studies (GWAS) have led to comprehensive identification of single nucleotide polymorphisms (SNPs) associated with periodontitis in diverse populations. Here we aimed to detect and validate the association of seven SNPs as genetic markers of susceptibility to periodontitis in a Brazilian population. METHODS: This case-control study assessed complete periodontal parameters of 714 subjects with periodontal status classified as healthy/mild periodontitis (n = 356) and moderate/severe periodontitis (n = 358). Genotyping for rs187238, rs352140, rs1360573, rs2521634, rs3811046, rs3826782, and rs7762544 SNPs were evaluated. Genetic-phenotype associations, and sex or smoking effects of SNPs on periodontitis were tested using multiple logistic regressions adjusted for covariates. RESULTS: The rs2521634-AA (close to NPY gene) presented increased risk for severe periodontitis (OR = 2.34; 95% CI = 1.19-4.59). The rs3811046-GG (IL37 gene) demonstrated increased risk for moderate periodontitis (OR = 2.58; 95% CI = 1.28-5.18). Higher risk for moderate periodontitis was found in male with rs7762544-AG close to NCR2 gene. The rs352140-TT in the TLR9 gene proved to be associated with lower risk to severe periodontitis in men. The rs2521634-AA was associated with higher percentage of interproximal probing pocket depth (P = .004). CONCLUSIONS: This is the first evidence of validation in a Brazilian population of genetic markers of periodontitis previously investigated by GWAS and bioinformatics studies. SNPs in the NPY, IL37, and NCR2 genes were associated with susceptibility to moderate or severe periodontitis; whereas the TLR9 marker was associated with lower chance to develop severe periodontitis. Those SNPs had sex- and smoking-habit-specific effects on periodontitis; reinforcing the genetic profile predisposing to periodontitis.