Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 12(10): 2372-2391, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35904479

RESUMO

Chimeric antigen receptor T-cell (CART) immunotherapy led to unprecedented responses in patients with refractory/relapsed B-cell non-Hodgkin lymphoma (NHL); nevertheless, two thirds of patients experience treatment failure. Resistance to apoptosis is a key feature of cancer cells, and it is associated with treatment failure. In 87 patients with NHL treated with anti-CD19 CART, we found that chromosomal alteration of B-cell lymphoma 2 (BCL-2), a critical antiapoptotic regulator, in lymphoma cells was associated with reduced survival. Therefore, we combined CART19 with the FDA-approved BCL-2 inhibitor venetoclax and demonstrated in vivo synergy in venetoclax-sensitive NHL. However, higher venetoclax doses needed for venetoclax-resistant lymphomas resulted in CART toxicity. To overcome this limitation, we developed venetoclax-resistant CART by overexpressing mutated BCL-2(F104L), which is not recognized by venetoclax. Notably, BCL-2(F104L)-CART19 synergized with venetoclax in multiple lymphoma xenograft models. Furthermore, we uncovered that BCL-2 overexpression in T cells intrinsically enhanced CART antitumor activity in preclinical models and in patients by prolonging CART persistence. SIGNIFICANCE: This study highlights the role of BCL-2 in resistance to CART immunotherapy for cancer and introduces a novel concept for combination therapies-the engineering of CART cells to make them resistant to proapoptotic small molecules, thereby enhancing the therapeutic index of these combination therapies. This article is highlighted in the In This Issue feature, p. 2221.


Assuntos
Linfoma de Células B , Linfoma , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Antígenos Quiméricos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Linfoma/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores de Antígenos de Linfócitos T , Sulfonamidas , Linfócitos T
2.
Nat Biotechnol ; 40(7): 1103-1113, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35241838

RESUMO

Many cancers carry recurrent, change-of-function mutations affecting RNA splicing factors. Here, we describe a method to harness this abnormal splicing activity to drive splicing factor mutation-dependent gene expression to selectively eliminate tumor cells. We engineered synthetic introns that were efficiently spliced in cancer cells bearing SF3B1 mutations, but unspliced in otherwise isogenic wild-type cells, to yield mutation-dependent protein production. A massively parallel screen of 8,878 introns delineated ideal intronic size and mapped elements underlying mutation-dependent splicing. Synthetic introns enabled mutation-dependent expression of herpes simplex virus-thymidine kinase (HSV-TK) and subsequent ganciclovir (GCV)-mediated killing of SF3B1-mutant leukemia, breast cancer, uveal melanoma and pancreatic cancer cells in vitro, while leaving wild-type cells unaffected. Delivery of synthetic intron-containing HSV-TK constructs to leukemia, breast cancer and uveal melanoma cells and GCV treatment in vivo significantly suppressed the growth of these otherwise lethal xenografts and improved mouse host survival. Synthetic introns provide a means to exploit tumor-specific changes in RNA splicing for cancer gene therapy.


Assuntos
Neoplasias da Mama , Leucemia , Melanoma , Animais , Antivirais , Neoplasias da Mama/genética , Feminino , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Terapia Genética/métodos , Humanos , Íntrons/genética , Leucemia/genética , Melanoma/genética , Melanoma/terapia , Camundongos , Mutação/genética , Fatores de Processamento de RNA/genética , Timidina Quinase/genética , Timidina Quinase/metabolismo , Neoplasias Uveais
3.
Blood ; 139(13): 2038-2049, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34861039

RESUMO

SF3B1 splicing factor mutations are near-universally found in myelodysplastic syndromes (MDS) with ring sideroblasts (RS), a clonal hematopoietic disorder characterized by abnormal erythroid cells with iron-loaded mitochondria. Despite this remarkably strong genotype-to-phenotype correlation, the mechanism by which mutant SF3B1 dysregulates iron metabolism to cause RS remains unclear due to an absence of physiological models of RS formation. Here, we report an induced pluripotent stem cell model of SF3B1-mutant MDS that for the first time recapitulates robust RS formation during in vitro erythroid differentiation. Mutant SF3B1 induces missplicing of ∼100 genes throughout erythroid differentiation, including proposed RS driver genes TMEM14C, PPOX, and ABCB7. All 3 missplicing events reduce protein expression, notably occurring via 5' UTR alteration, and reduced translation efficiency for TMEM14C. Functional rescue of TMEM14C and ABCB7, but not the non-rate-limiting enzyme PPOX, markedly decreased RS, and their combined rescue nearly abolished RS formation. Our study demonstrates that coordinated missplicing of mitochondrial transporters TMEM14C and ABCB7 by mutant SF3B1 sequesters iron in mitochondria, causing RS formation.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Síndromes Mielodisplásicas , Fosfoproteínas , Transportadores de Cassetes de Ligação de ATP , Diferenciação Celular/genética , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Proteínas Mitocondriais/genética , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Fosfoproteínas/genética , Protoporfirinogênio Oxidase/genética , Protoporfirinogênio Oxidase/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
4.
Blood ; 136(13): 1477-1486, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32640014

RESUMO

Large-scale sequencing studies of hematologic malignancies have revealed notable epistasis among high-frequency mutations. One of the most striking examples of epistasis occurs for mutations in RNA splicing factors. These lesions are among the most common alterations in myeloid neoplasms and generally occur in a mutually exclusive manner, a finding attributed to their synthetic lethal interactions and/or convergent effects. Curiously, however, patients with multiple-concomitant splicing factor mutations have been observed, challenging our understanding of one of the most common examples of epistasis in hematologic malignancies. In this study, we performed bulk and single-cell analyses of patients with myeloid malignancy who were harboring ≥2 splicing factor mutations, to understand the frequency and basis for the coexistence of these mutations. Although mutations in splicing factors were strongly mutually exclusive across 4231 patients (q < .001), 0.85% harbored 2 concomitant bona fide splicing factor mutations, ∼50% of which were present in the same individual cells. However, the distribution of mutations in patients with double mutations deviated from that in those with single mutations, with selection against the most common alleles, SF3B1K700E and SRSF2P95H/L/R, and selection for less common alleles, such as SF3B1 non-K700E mutations, rare amino acid substitutions at SRSF2P95, and combined U2AF1S34/Q157 mutations. SF3B1 and SRSF2 alleles enriched in those with double-mutations had reduced effects on RNA splicing and/or binding compared with the most common alleles. Moreover, dual U2AF1 mutations occurred in cis with preservation of the wild-type allele. These data highlight allele-specific differences as critical in regulating the molecular effects of splicing factor mutations as well as their cooccurrences/exclusivities with one another.


Assuntos
Epistasia Genética , Neoplasias Hematológicas/genética , Mutação , Fatores de Processamento de RNA/genética , Splicing de RNA , Alelos , Análise Mutacional de DNA , Genômica , Humanos , Leucemia Mieloide/genética , Análise de Célula Única
5.
Blood ; 135(13): 1032-1043, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31961934

RESUMO

Genes encoding the RNA splicing factors SF3B1, SRSF2, and U2AF1 are subject to frequent missense mutations in clonal hematopoiesis and diverse neoplastic diseases. Most "spliceosomal" mutations affect specific hotspot residues, resulting in splicing changes that promote disease pathophysiology. However, a subset of patients carries spliceosomal mutations that affect non-hotspot residues, whose potential functional contributions to disease are unstudied. Here, we undertook a systematic characterization of diverse rare and private spliceosomal mutations to infer their likely disease relevance. We used isogenic cell lines and primary patient materials to discover that 11 of 14 studied rare and private mutations in SRSF2 and U2AF1 induced distinct splicing alterations, including partially or completely phenocopying the alterations in exon and splice site recognition induced by hotspot mutations or driving "dual" phenocopies that mimicked 2 co-occurring hotspot mutations. Our data suggest that many rare and private spliceosomal mutations contribute to disease pathogenesis and illustrate the utility of molecular assays to inform precision medicine by inferring the potential disease relevance of newly discovered mutations.


Assuntos
Estudos de Associação Genética , Mutação , Penetrância , Fenótipo , Spliceossomos/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Éxons , Perfilação da Expressão Gênica , Humanos , Sítios de Splice de RNA , Splicing de RNA , Fatores de Processamento de RNA/genética , Transcriptoma
6.
Nature ; 574(7778): 432-436, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31597964

RESUMO

SF3B1 is the most commonly mutated RNA splicing factor in cancer1-4, but the mechanisms by which SF3B1 mutations promote malignancy are poorly understood. Here we integrated pan-cancer splicing analyses with a positive-enrichment CRISPR screen to prioritize splicing alterations that promote tumorigenesis. We report that diverse SF3B1 mutations converge on repression of BRD9, which is a core component of the recently described non-canonical BAF chromatin-remodelling complex that also contains GLTSCR1 and GLTSCR1L5-7. Mutant SF3B1 recognizes an aberrant, deep intronic branchpoint within BRD9 and thereby induces the inclusion of a poison exon that is derived from an endogenous retroviral element and subsequent degradation of BRD9 mRNA. Depletion of BRD9 causes the loss of non-canonical BAF at CTCF-associated loci and promotes melanomagenesis. BRD9 is a potent tumour suppressor in uveal melanoma, such that correcting mis-splicing of BRD9 in SF3B1-mutant cells using antisense oligonucleotides or CRISPR-directed mutagenesis suppresses tumour growth. Our results implicate the disruption of non-canonical BAF in the diverse cancer types that carry SF3B1 mutations and suggest a mechanism-based therapeutic approach for treating these malignancies.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias/genética , Splicing de RNA , Spliceossomos/metabolismo , Animais , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Humanos , Camundongos , Transplante de Neoplasias , Neoplasias/patologia , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Spliceossomos/genética , Fatores de Transcrição/metabolismo
7.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30107174

RESUMO

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Assuntos
Mutação , Neoplasias/genética , Spliceossomos , Animais , Caspase 8/genética , Feminino , Hematopoese , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de Serina-Arginina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA