Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anim Reprod Sci ; 244: 107045, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932512

RESUMO

Nutritional changes immediately after insemination cause increased embryonic mortality, but the mechanisms controlling this are not well known. Our objective was to evaluate the impact of nutritional change on estrus expression, steroid concentrations, peripheral and uterine luminal fluid metabolites, and embryo quality in beef heifers. Heifers (n = 139) were assigned to one of two pre-artificial insemination (AI) dietary treatments: LOW (≤ 90% NEm) or HIGH (≥ 139% NEm). Heifers were on treatment for 33-36 days before AI (d0) when half of the heifers in each treatment were randomly reassigned to generate four treatments; HIGH-HIGH, HIGH-LOW, LOW-HIGH, and LOW-LOW. Heifers remained on treatments until embryo collection (d 6-8). Negative energy balance was achieved among LOW heifers as demonstrated by body weight loss and increased NEFA concentrations (P < 0.05). Pre-AI treatment influenced expression of estrus (P = 0.05; HIGH 80.4 ± 4.0% vs. LOW 69.4 ± 4.2%). Estradiol concentrations and interval to estrus were not affected by treatment (P > 0.55); however, progesterone concentrations were reduced among LOW compared to HIGH (3.57 ± 0.27, 4.64 ± 0.26 ng/mL, respectively; P = 0.004), and heifers maintained on the HIGH pre-AI diet had consistently greater concentrations of progesterone from d 0 to d 8 (P = 0.014). Pre-AI treatment influenced embryo stage (P = 0.05; HIGH 3.61 ± 0.32 vs. LOW 2.72 ± 0.30). Post-AI treatment affected embryo grade (P = 0.02; HIGH 1.78 ± 0.23 vs. LOW 2.64 ± 0.27). In summary, pre-AI nutrient restriction caused decreased expression of estrus, reduced progesterone concentrations after AI, and negatively impacted embryo development, while post-AI restriction hindered embryo quality.


Assuntos
Sincronização do Estro , Progesterona , Animais , Bovinos , Dinoprosta , Desenvolvimento Embrionário , Estro , Feminino , Hormônio Liberador de Gonadotropina , Inseminação Artificial/veterinária , Nutrientes
2.
J Extracell Vesicles ; 11(4): e12208, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383410

RESUMO

Extracellular vesicles (EVs) are of growing interest due to their potential diagnostic, disease surveillance, and therapeutic applications. While several studies have evaluated EV isolation methods in various biofluids, there are few if any data on these techniques when applied to stool. The latter is an ideal biospecimen for studying EVs and colorectal cancer (CRC) because the release of tumour markers by luminal exfoliation into stool occurs earlier than vascular invasion. Since EV release is a conserved mechanism, bacteria in stool contribute to the overall EV population. In this study, we assessed five EV separation methods (ultracentrifugation [UC], precipitation [EQ-O, EQ-TC], size exclusion chromatography [SEC], and ultrafiltration [UF]) for total recovery, reproducibility, purity, RNA composition, and protein expression in stool supernatant. CD63, TSG101, and ompA proteins were present in EV fractions from all methods except UC. Human (18s) and bacterial (16s) rRNA was detected in stool EV preparations. Enzymatic treatment prior to extraction is necessary to avoid non-vesicular RNA contamination. Ultrafiltration had the highest recovery, RNA, and protein yield. After assessing purity further, SEC was the isolation method of choice. These findings serve as the groundwork for future studies that use high throughput omics technologies to investigate the potential of stool-derived EVs as a source for novel biomarkers for early CRC detection.


Assuntos
Vesículas Extracelulares , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Humanos , Reprodutibilidade dos Testes , Ultracentrifugação , Ultrafiltração
3.
Theriogenology ; 184: 51-60, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35276488

RESUMO

Sperm are stored for extended periods of time in the epididymis, but upon ejaculation motility is increased and lifespan is decreased. The objective of this study was to identify differences in proteins between epididymis and ejaculated samples that are associated with longevity. Ejaculated semen was collected from mature Angus bulls (n = 9); bulls were slaughtered and epididymal semen was collected. Epididymal and ejaculated semen were centrifuged to separate sperm and fluid. Fluids were removed and sperm pellets were resuspended in a high ionic solution and vortexed to remove loosely attached proteins. Sperm samples were centrifuged, and the supernatant was removed; both fluid and sperm samples were snap frozen in liquid nitrogen and stored at -80 °C. Protein analysis was performed by LCMS/MS. A different group of yearling Angus cross bulls (n = 40) were used for sperm cultures. Ejaculated (n = 20) and epididymal (n = 20) semen were diluted and cultured in a commercial media at pH 5.8, 6.8 and 7.3, at 4 °C. Sperm were evaluated for motility and viability every 24 h until motility was lower than 20%. There was an effect of pH, time and pH by time interaction for motility and viability for both ejaculated and epididymal sperm (P ≤ 0.05). At 216 h of incubation epididymal sperm at pH 7.3 and ejaculated sperm at pH 6.8 reached motility below 20%. A total of 458 unique proteins were identified; 178, 298, 311, and 344 proteins were identified in ejaculated fluid, ejaculated sperm, epididymal fluid and epididymal sperm, respectively. There were 8, 24, 10, and 18 significant KEGG pathways (FDR <0.05) for ejaculated fluid, epididymal fluid, ejaculated sperm, and epididymal sperm, respectively. The metabolic pathway was identified as the most important KEGG pathway; glycolysis/gluconeogenesis, pentose phosphate, and glutathione metabolism pathways were significant among proteins only present in epididymal samples within the metabolic pathway. Other proteins identified that may be related to epididymal sperm's increased longevity were peroxidases and glutathione peroxidases for their antioxidant properties. In summary, energy metabolism in the epididymis appears to be more glycolytic compared to ejaculated and epididymis sperm have a larger number of antioxidants available which may be helping to maintain sperm in a quiescent state. Epididymal sperm remained viable (membrane integrity) longer than ejaculated sperm when cultured at the same pH.


Assuntos
Epididimo , Preservação do Sêmen , Animais , Bovinos , Ejaculação , Glutationa , Longevidade , Masculino , Peroxidases , Proteômica , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides
4.
Mol Cell Endocrinol ; 540: 111508, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34800604

RESUMO

The uterine environment must provide sufficient endocrine conditions and nutrients for pregnancy maintenance and conceptus survival. The objective of this study was to determine the effects of preovulatory estradiol and conceptus presence on uterine transcripts and uterine luminal fluid (ULF) proteins. Beef cows/heifers were synchronized and artificially inseminated (d 0). Uteri were flushed (d 16); conceptuses and endometrial biopsies were collected. Total cellular RNA was extracted from endometrium for RNA sequencing and RT-PCR validation. There were two independent ULF pools made for each of the following groups: highE2/conceptus, highE2/noconceptus, lowE2/conceptus, and lowE2/noconceptus that were analyzed using the 2D LC-MS/MS based iTRAQ method. There were 64 differentially expressed genes (DEGs) and 77 differentially expressed proteins (DEPs) in common among the highE2/conceptus vs highE2/noconceptus and lowE2/conceptus vs lowE2/noconceptus groups. In summary, the interaction between preovulatory estradiol and the conceptus induces the expression of genes, proteins, and pathways necessary for pregnancy.


Assuntos
Bovinos , Embrião de Mamíferos/fisiologia , Percepção/fisiologia , Prenhez , Útero/metabolismo , Animais , Bovinos/genética , Bovinos/fisiologia , Embrião de Mamíferos/diagnóstico por imagem , Desenvolvimento Embrionário/fisiologia , Endométrio/metabolismo , Estradiol/farmacologia , Feminino , Fase Folicular/efeitos dos fármacos , Fase Folicular/fisiologia , Regulação da Expressão Gênica , Gravidez , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Prenhez/genética , Prenhez/psicologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ultrassonografia Pré-Natal/veterinária , Útero/diagnóstico por imagem
5.
Biol Reprod ; 105(2): 381-392, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33962467

RESUMO

Embryo survival and pregnancy success is increased among animals that exhibit estrus prior to fixed time-artificial insemination, but there are no differences in conceptus survival to d16. The objective of this study was to determine effects of preovulatory estradiol on uterine transcriptomes, select trophectoderm (TE) transcripts, and uterine luminal fluid proteins. Beef cows/heifers were synchronized, artificially inseminated (d0), and grouped into either high (highE2) or low (lowE2) preovulatory estradiol. Uteri were flushed (d16); conceptuses and endometrial biopsies (n = 29) were collected. RNA sequencing was performed on endometrium. Real-time polymerase chain reaction (RT-PCR) was performed on TE (n = 21) RNA to measure relative abundance of IFNT, PTGS2, TM4SF1, C3, FGFR2, and GAPDH. Uterine fluid was analyzed using 2D Liquid Chromatography with tandem mass spectrometry-based Isobaric tags for relative and absolute quantitation (iTRAQ) method. RT-PCR data were analyzed using the MIXED procedure in SAS. There were no differences in messenger RNA (mRNA) abundances in TE, but there were 432 differentially expressed genes (253 downregulated, 179 upregulated) in highE2/conceptus versus lowE2/conceptus groups. There were also 48 differentially expressed proteins (19 upregulated, 29 downregulated); 6 of these were differentially expressed (FDR < 0.10) at the mRNA level. Similar pathways for mRNA and proteins included: calcium signaling, protein kinase A signaling, and corticotropin-releasing hormone signaling. These differences in uterine function may be preparing the conceptus for improved likelihood of survival after d16 among highE2 animals.


Assuntos
Blastocisto/metabolismo , Bovinos/embriologia , Embrião de Mamíferos/embriologia , Estradiol/metabolismo , Transcrição Gênica , Útero/embriologia , Animais , Bovinos/genética , Embrião de Mamíferos/metabolismo , Epitélio/metabolismo , Feminino , Gravidez , Prenhez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA