Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 54(1): 49, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328906

RESUMO

Swine dysentery (SD) caused by pathogenic Brachyspira spp. is an economic challenge for the swine industry. In research settings, experimental reproduction of swine dysentery typically relies on intragastric inoculation which has shown variable success. This project aimed to improve the consistency of the experimental inoculation protocol used for swine dysentery in our laboratory. Over six experiments, we evaluated the influence of group housing in inoculated pigs using a frozen-thawed broth culture of strongly hemolytic B. hyodysenteriae strain D19 (Trial A), compared the relative virulence of B. hyodysenteriae strains D19 and G44 (Trial B), compared inoculum volumes (50 mL vs 100 mL) for G44 and B. hampsonii 30446 (Trial C), and performed three independent trials evaluating intragastric inoculation using different oral inoculation methods: oral feed balls (Trial D), and oral syringe bolus of 100 mL (Trial E) or 300 mL (Trial F). Intragastric inoculation with a fresh broth culture of B. hyodysenteriae strain G44 resulted in a shorter incubation period and a higher proportionate duration of mucohemorrhagic diarrhea (MMHD) compared to D19. Intragastric inoculation with either 50 or 100 mL of B. hampsonii 30446 or B. hyodysenteriae (G44) were statistically equivalent. Oral inoculation with 100 mL or 300 mL also yielded similar results to intragastric inoculation but was more expensive due to the additional work and supplies associated with syringe training. Our future research will use intragastric inoculation with 100 mL of a fresh broth culture containing B. hyodysenteriae strain G44 as it yields a high incidence of mucohaemorrhagic diarrhea with a reasonable cost.


Assuntos
Brachyspira hyodysenteriae , Brachyspira , Disenteria , Infecções por Bactérias Gram-Negativas , Doenças dos Suínos , Suínos , Animais , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Suínos/epidemiologia , Diarreia/veterinária , Disenteria/veterinária
2.
Vet Microbiol ; 262: 109246, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34624640

RESUMO

Swine ear-tip necrosis (ETN) is a disease of global presence and unclear aetiology. Little evidence is available regarding the nature of this disease. The aim of this work was to investigate if ETN is an infectious disease that could be replicated using a lesion macerate inoculum. A source farm with a history of ear-tip necrosis was identified and five weeks-old pigs (n = 12) from this farm were housed under controlled conditions and intradermally inoculated with ETN lesion macerates (right ear, n = 10) or sterile inoculum (left ear, n = 10). Two pigs were not inoculated, serving as sentinels. All animals were clinically monitored daily during 21 days, and a ETN ear score was used to follow disease progression. Anaerobic (n = 2) and aerobic (n = 2) overnight cultures, as well as raw aliquots of the lesion macerate inoculum (n = 2) and control inoculum (n = 2) were submitted for metagenomic sequencing. All inoculated ears developed lesions suggestive of early ETN, but none progressed to result in loss of the ear pinna. All completely resolved 21 days post-inoculation. Post-mortem investigation revealed areas of fibrosis, characterized by a granulomatous response in the inoculated ears (5/10) and in 1/10 control ears. Metagenomic analysis identified the presence of previously suggested bacterial etiological agents, but no relevant viral, fungal or protozoan agents in the inoculum. ETN etiology remains unclear, but an infectious cause and bacterial agents are suggested to be at least partially implicated in disease pathogenesis. Virus and fungi do not seem to significantly contribute to disease.


Assuntos
Infecções Bacterianas , Doenças Transmissíveis , Necrose , Doenças dos Suínos , Animais , Infecções Bacterianas/microbiologia , Fenômenos Fisiológicos Bacterianos , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/veterinária , Necrose/microbiologia , Necrose/veterinária , Suínos , Doenças dos Suínos/microbiologia
3.
Pathog Dis ; 75(3)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369531

RESUMO

Mucohemorrhagic diarrhea in pigs caused by Brachyspira spp. has a global distribution, and an economic impact on affected farms due to poor performance of animals. Demonstrations that "Brachyspira hampsonii" is pathogenic have been achieved using in vivo animal models, but a critical knowledge gap exists regarding the pathogenic mechanisms employed by Brachyspira. Here, we used in vitro organ culture of porcine colon to investigate interactions between "B. hampsonii" and explants during the first 12 h of contact. Explants were either inoculated with "B. hampsonii" or sterile culture broth. Responses to infection were evaluated by optical microscopy and quantitative PCR. Significantly greater numbers of necrotic crypt cells and thicker catarrhal exudate were observed on infected explants compared to controls. Spirochaetes were observed in the mucus layer, in contact with necrotic exfoliated cells, in crypts and the lamina propria. Statistical differences were observed in mRNA levels between inoculated and control explants for IL-1α, TNF-α and ZO-1 using a Bayesian analysis, but not observed using the ΔΔCq method. These results provide a demonstration of a porcine colon explant model for investigating interactions of Brachyspira with its host and show that initial effects on the host are observed within the first 12 h of contact.


Assuntos
Brachyspira/fisiologia , Colite/veterinária , Infecções por Bactérias Gram-Negativas/veterinária , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Doenças dos Suínos/microbiologia , Doenças dos Suínos/patologia , Animais , Biomarcadores , Biópsia , Citocinas/metabolismo , Exsudatos e Transudatos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Necrose , Suínos , Doenças dos Suínos/metabolismo
4.
3D Print Med ; 3(1): 9, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29782611

RESUMO

BACKGROUND: Most interactions between pathogenic microorganisms and their target host occur on mucosal surfaces of internal organs such as the intestine. In vitro organ culture (IVOC) provides an unique tool for studying host-pathogen interactions in a controlled environment. However, this technique requires a complex laboratory setup and specialized apparatus. In addition, issues arise when anaerobic pathogens are exposed to the hyperoxic environment required for intestinal culture. The objective of this study was to develop an accessible 3D-printed device that would allow manipulation of the gas mixture used to supply the tissue culture media separately from the gas mixture exposed to the mucosal side of explants. RESULTS: Porcine colon explants from 2 pigs were prepared (n = 20) and cultured for 0h, 8h, 18h and 24h using the device. After the culture period, explants were fixed in formalin and H&E stained sections were evaluated for histological defects of the mucosa. At 8h, 66% of samples displayed no histological abnormalities, whereas samples collected at 18h and 24h displayed progressively increasing rates of superficial epithelial erosion and epithelial metaplasia. CONCLUSIONS: The 3D-design reported here allows investigators to setup intestinal culture explants while manipulating the gas media explants are exposed to, to support tissue viability for a minimal of 8h. The amount of media necessary and tissue contamination are potential issues associated with this apparatus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA