Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324638

RESUMO

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Animais , Humanos , Camundongos , Éxons , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Immunol Rev ; 322(1): 178-211, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228406

RESUMO

The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.


Assuntos
Síndromes de Imunodeficiência , Linfócitos T , Timo/anormalidades , Recém-Nascido , Humanos , Diferenciação Celular
3.
J Allergy Clin Immunol ; 153(5): 1423-1431.e2, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38290608

RESUMO

BACKGROUND: P47phox (neutrophil cytosolic factor-1) deficiency is the most common cause of autosomal recessive chronic granulomatous disease (CGD) and is considered to be associated with a milder clinical phenotype. Allogeneic hematopoietic cell transplantation (HCT) for p47phox CGD is not well-described. OBJECTIVES: We sought to study HCT for p47phox CGD in North America. METHODS: Thirty patients with p47phox CGD who received allogeneic HCT at Primary Immune Deficiency Treatment Consortium centers since 1995 were included. RESULTS: Residual oxidative activity was present in 66.7% of patients. In the year before HCT, there were 0.38 CGD-related infections per person-years. Inflammatory diseases, predominantly of the lungs and bowel, occurred in 36.7% of the patients. The median age at HCT was 9.1 years (range 1.5-23.6 years). Most HCTs (90%) were performed after using reduced intensity/toxicity conditioning. HCT sources were HLA-matched (40%) and -mismatched (10%) related donors or HLA-matched (36.7%) and -mismatched (13.3%) unrelated donors. CGD-related infections after HCT decreased significantly to 0.06 per person-years (P = .038). The frequency of inflammatory bowel disease and the use of steroids also decreased. The cumulative incidence of graft failure and second HCT was 17.9%. The 2-year overall and event-free survival were 92.3% and 82.1%, respectively, while at 5 years they were 85.7% and 77.0%, respectively. In the surviving patients evaluated, ≥95% donor myeloid chimerism at 1 and 2 years after HCT was 93.8% and 87.5%, respectively. CONCLUSIONS: Patients with p47phox CGD suffer from a significant disease burden that can be effectively alleviated by HCT. Similar to other forms of CGD, HCT should be considered for patients with p47phox CGD.


Assuntos
Doença Granulomatosa Crônica , Transplante de Células-Tronco Hematopoéticas , NADPH Oxidases , Humanos , Doença Granulomatosa Crônica/terapia , Doença Granulomatosa Crônica/genética , NADPH Oxidases/genética , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Lactente , Adulto Jovem , Transplante Homólogo , Condicionamento Pré-Transplante/métodos , Doença Enxerto-Hospedeiro , Adulto , Resultado do Tratamento
4.
J Allergy Clin Immunol ; 153(1): 341-348.e3, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567393

RESUMO

BACKGROUND: Mutations in the recombinase-activating genes 1 and 2 (RAG1, RAG2) cause a spectrum of phenotypes, ranging from severe combined immune deficiency to combined immune deficiency with immune dysregulation (CID-ID). Hematopoietic cell transplantation is a curative option. Use of conditioning facilitates robust and durable stem cell engraftment and immune reconstitution but may cause toxicity. Transplantation from haploidentical donors is associated with poor outcome in patients with CID-ID. OBJECTIVES: We sought to evaluate multilineage engraftment and immune reconstitution after conditioning with CD45-antibody drug conjugate (CD45-ADC) as a single agent in hypomorphic mice with Rag1 mutation treated with congenic and haploidentical hematopoietic cell transplantation. METHODS: Rag1-F971L mice, a model of CID-ID, were conditioned with various doses of CD45-ADC, total body irradiation, or isotype-ADC, and then given transplants of total bone marrow cells from congenic or haploidentical donors. Flow cytometry was used to assess chimerism and immune reconstitution. Histology was used to document reconstitution of thymic architecture. RESULTS: Conditioning with CD45-ADC as a single agent allowed robust engraftment and immune reconstitution, with restoration of thymus, bone marrow, and peripheral compartments. The optimal doses of CD45-ADC were 1.5 mg/kg and 5 mg/kg for congenic and haploidentical transplantation, respectively. No graft-versus-host disease was observed. CONCLUSIONS: Conditioning with CD45-ADC alone allows full donor chimerism and immune reconstitution in Rag1 hypomorphic mice even following haploidentical transplantation, opening the way for the implementation of similar approaches in humans.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Humanos , Camundongos , Animais , Condicionamento Pré-Transplante , Transplante de Medula Óssea , Síndromes de Imunodeficiência/terapia , Proteínas de Homeodomínio/genética
5.
J Allergy Clin Immunol ; 153(1): 287-296, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793572

RESUMO

BACKGROUND: The Primary Immune Deficiency Treatment Consortium (PIDTC) enrolled children in the United States and Canada onto a retrospective multicenter natural history study of hematopoietic cell transplantation (HCT). OBJECTIVE: We investigated outcomes of HCT for severe combined immunodeficiency (SCID). METHODS: We evaluated the chronic and late effects (CLE) after HCT for SCID in 399 patients transplanted from 1982 to 2012 at 32 PIDTC centers. Eligibility criteria included survival to at least 2 years after HCT without need for subsequent cellular therapy. CLE were defined as either conditions present at any time before 2 years from HCT that remained unresolved (chronic), or new conditions that developed beyond 2 years after HCT (late). RESULTS: The cumulative incidence of CLE was 25% in those alive at 2 years, increasing to 41% at 15 years after HCT. CLE were most prevalent in the neurologic (9%), neurodevelopmental (8%), and dental (8%) categories. Chemotherapy-based conditioning was associated with decreased-height z score at 2 to 5 years after HCT (P < .001), and with endocrine (P < .001) and dental (P = .05) CLE. CD4 count of ≤500 cells/µL and/or continued need for immunoglobulin replacement therapy >2 years after transplantation were associated with lower-height z scores. Continued survival from 2 to 15 years after HCT was 90%. The presence of any CLE was associated with increased risk of late death (hazard ratio, 7.21; 95% confidence interval, 2.71-19.18; P < .001). CONCLUSION: Late morbidity after HCT for SCID was substantial, with an adverse impact on overall survival. This study provides evidence for development of survivorship guidelines based on disease characteristics and treatment exposure for patients after HCT for SCID.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunodeficiência Combinada Severa , Criança , Humanos , Imunodeficiência Combinada Severa/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Incidência , Canadá/epidemiologia , Estudos Retrospectivos , Condicionamento Pré-Transplante
6.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
7.
Front Immunol ; 14: 1303251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116000

RESUMO

Introduction: Mulibrey nanism (MUL) is a rare disorder caused by TRIM37 gene variants characterized by growth failure, dysmorphic features, congestive heart failure (CHF), and an increased risk of Wilms' tumor. Although immune system impairment has been documented in MUL, the underlying mechanisms remain poorly understood. Methods: We present a case of MUL with progressive lymphopenia and review similar cases from the literature. Results: Our patient presented with prenatal onset growth restriction, characteristic dysmorphic features, and Wilms' tumor. She developed progressive lymphopenia starting at 10 years of age, leading to the initiation of intravenous immunoglobulin (IVIG) replacement therapy and infection prophylaxis. Genetic analysis detected a likely pathogenic variant on the maternal allele and copy number loss on the paternal allele in TRIM37. Subsequently a cardiac magnetic resonance imaging was conducted revealing signs of pericardial constriction raising concerns for intestinal lymphatic losses. The cessation of IVIG therapy did not coincide with any increase in the rate of infections. The patient exhibited a distinct immunological profile, characterized by hypogammaglobulinemia, impaired antibody responses, and skewed T-cell subsets with an altered CD4+/CD8+ ratio, consistent with previous reports. Normal thymocyte development assessed by artificial thymic organoid platform ruled out an early hematopoietic intrinsic defect of T-cell development. Discussion: The immunological profile of MUL patients reported so far shares similarities with that described in protein-losing enteropathy secondary to CHF in Fontan circulation and primary intestinal lymphangiectasia. These similarities include hypogammaglobulinemia, significant T-cell deficiency with decreased CD4+ and CD8+ counts, altered CD4+/CD8+ ratios, and significantly modified CD4+ and CD8+ T-cell phenotypes toward effector and terminal differentiated T cells, accompanied by a loss of naïve CD45RA+ T lymphocytes. In MUL, CHF is a cardinal feature, occurring in a significant proportion of patients and influencing prognosis. Signs of CHF or constrictive pericarditis have been evident in the case reported here and in all cases of MUL with documented immune dysfunction reported so far. These observations raise intriguing connections between these conditions. However, further investigation is warranted to in-depth define the immunological defect, providing valuable insights into the pathophysiology and treatment strategies for this condition.


Assuntos
Agamaglobulinemia , Insuficiência Cardíaca , Neoplasias Renais , Linfopenia , Nanismo de Mulibrey , Tumor de Wilms , Feminino , Humanos , Agamaglobulinemia/complicações , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Imunoglobulinas Intravenosas/uso terapêutico , Neoplasias Renais/genética , Linfopenia/complicações , Nanismo de Mulibrey/genética , Mutação , Proteínas Nucleares/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Tumor de Wilms/complicações
8.
J Clin Immunol ; 44(1): 2, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099988

RESUMO

The DNA polymerase δ complex (PolD), comprising catalytic subunit POLD1 and accessory subunits POLD2, POLD3, and POLD4, is essential for DNA synthesis and is central to genome integrity. We identified, by whole exome sequencing, a homozygous missense mutation (c.1118A > C; p.K373T) in POLD3 in a patient with Omenn syndrome. The patient exhibited severely decreased numbers of naïve T cells associated with a restricted T-cell receptor repertoire and a defect in the early stages of TCR recombination. The patient received hematopoietic stem cell transplantation at age 6 months. He manifested progressive neurological regression and ultimately died at age 4 years. We performed molecular and functional analysis of the mutant POLD3 and assessed cell cycle progression as well as replication-associated DNA damage. Patient fibroblasts showed a marked defect in S-phase entry and an enhanced number of double-stranded DNA break-associated foci despite normal expression levels of PolD components. The cell cycle defect was rescued by transduction with WT POLD3. This study validates autosomal recessive POLD3 deficiency as a novel cause of profound T-cell deficiency and Omenn syndrome.


Assuntos
DNA Polimerase III , Imunodeficiência Combinada Severa , Masculino , Humanos , Lactente , Pré-Escolar , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Ciclo Celular , Dano ao DNA , Fibroblastos
9.
J Clin Immunol ; 44(1): 17, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38129705

RESUMO

PURPOSE: Inherited deficiencies of CD40 and CD40 ligand (CD40L) reflect the crucial immunological functions of CD40-CD40L interaction/signaling. Although numerous studies have provided a detailed description of CD40L deficiency, reports of CD40 deficiency are scarce. Herein, we describe the characteristics of all reported patients with CD40 deficiency. METHODS: The PubMed, Embase and Web of Science databases were searched for relevant literature published till 7th August 2023. Study deduplication and identification of relevant reports was performed using the online PICO Portal. The data were extracted using a pre-designed data extraction form and the SPSS software was used for analysis. RESULTS: Systematic literature review revealed 40 unique patients with CD40 deficiency. Respiratory tract and gastrointestinal infections were the predominant clinical manifestations (observed in 93% and 57% patients, respectively). Sclerosing cholangitis has been reported in nearly one-third of patients. Cryptosporidium sp. (29%) and Pneumocystis jirovecii (21%) were the most common microbes identified. Very low to undetectable IgG levels and severely reduced/absent switch memory B cells were observed in all patients tested/reported. Elevated IgM levels were observed in 69% patients. Overall, splice-site and missense variants were the most common (36% and 32%, respectively) molecular defects identified. All patients were managed with immunoglobulin replacement therapy and antimicrobial prophylaxis was utilized in a subset. Hematopoietic stem cell transplantation (HSCT) has been performed in 45% patients (curative outcome observed in 73% of these patients). Overall, a fatal outcome was reported in 21% patients. CONCLUSIONS: We provide a comprehensive description of all important aspects of CD40 deficiency. HSCT is a promising curative treatment option for CD40 deficiency.


Assuntos
Criptosporidiose , Cryptosporidium , Síndrome de Imunodeficiência com Hiper-IgM , Síndromes de Imunodeficiência , Linfopenia , Humanos , Ligante de CD40/genética , Síndrome de Imunodeficiência com Hiper-IgM/genética , Síndromes de Imunodeficiência/genética , Antígenos CD40/genética , Imunoglobulina M
10.
Front Immunol ; 14: 1268620, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022635

RESUMO

Introduction: Recombination activating genes (RAG) 1 and 2 defects are the most frequent form of severe combined immunodeficiency (SCID). Patients with residual RAG activity have a spectrum of clinical manifestations ranging from Omenn syndrome to delayed-onset combined immunodeficiency, often associated with granulomas and/or autoimmunity (CID-G/AI). Lentiviral vector (LV) gene therapy (GT) has been proposed as an alternative treatment to the standard hematopoietic stem cell transplant and a clinical trial for RAG1 SCID patients recently started. However, GT in patients with hypomorphic RAG mutations poses additional risks, because of the residual endogenous RAG1 expression and the general state of immune dysregulation and associated inflammation. Methods: In this study, we assessed the efficacy of GT in 2 hypomorphic Rag1 murine models (Rag1F971L/F971L and Rag1R972Q/R972Q), exploiting the same LV used in the clinical trial encoding RAG1 under control of the MND promoter. Results and discussion: Starting 6 weeks after transplant, GT-treated mice showed a decrease in proportion of myeloid cells and a concomitant increase of B, T and total white blood cells. However, counts remained lower than in mice transplanted with WT Lin- cells. At euthanasia, we observed a general redistribution of immune subsets in tissues, with the appearance of mature recirculating B cells in the bone marrow. In the thymus, we demonstrated correction of the block at double negative stage, with a modest improvement in the cortical/medullary ratio. Analysis of antigenspecific IgM and IgG serum levels after in vivo challenge showed an amelioration of antibody responses, suggesting that the partial immune correction could confer a clinical benefit. Notably, no overt signs of autoimmunity were detected, with B-cell activating factor decreasing to normal levels and autoantibodies remaining stable after GT. On the other hand, thymic enlargement was frequently observed, although not due to vector integration and insertional mutagenesis. In conclusion, our work shows that GT could partially alleviate the combined immunodeficiency of hypomorphic RAG1 patients and that extensive efficacy and safety studies with alternative models are required before commencing RAG gene therapy in thesehighly complex patients.


Assuntos
Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Humanos , Camundongos , Animais , Proteínas de Homeodomínio/genética , Síndromes de Imunodeficiência/terapia , Linfócitos B , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Terapia Genética , Imunoproteínas , Mutação
11.
Sci Adv ; 9(41): eadh3150, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824621

RESUMO

Research on coronavirus disease 2019 vaccination in immune-deficient/disordered people (IDP) has focused on cancer and organ transplantation populations. In a prospective cohort of 195 IDP and 35 healthy volunteers (HV), antispike immunoglobulin G (IgG) was detected in 88% of IDP after dose 2, increasing to 93% by 6 months after dose 3. Despite high seroconversion, median IgG levels for IDP never surpassed one-third that of HV. IgG binding to Omicron BA.1 was lowest among variants. Angiotensin-converting enzyme 2 pseudo-neutralization only modestly correlated with antispike IgG concentration. IgG levels were not significantly altered by receipt of different messenger RNA-based vaccines, immunomodulating treatments, and prior severe acute respiratory syndrome coronavirus 2 infections. While our data show that three doses of coronavirus disease 2019 vaccinations induce antispike IgG in most IDP, additional doses are needed to increase protection. Because of the notably reduced IgG response to Omicron BA.1, the efficacy of additional vaccinations, including bivalent vaccines, should be studied in this population.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Vacinas contra COVID-19 , Estudos Prospectivos , COVID-19/prevenção & controle , Imunidade
12.
Clin Immunol ; 255: 109757, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689091

RESUMO

Paired box 1 (PAX1) deficiency has been reported in a small number of patients diagnosed with otofaciocervical syndrome type 2 (OFCS2). We described six new patients who demonstrated variable clinical penetrance. Reduced transcriptional activity of pathogenic variants confirmed partial or complete PAX1 deficiency. Thymic aplasia and hypoplasia were associated with impaired T cell immunity. Corrective treatment was required in 4/6 patients. Hematopoietic stem cell transplantation resulted in poor immune reconstitution with absent naïve T cells, contrasting with the superior recovery of T cell immunity after thymus transplantation. Normal ex vivo differentiation of PAX1-deficient CD34+ cells into mature T cells demonstrated the absence of a hematopoietic cell-intrinsic defect. New overlapping features with DiGeorge syndrome included primary hypoparathyroidism (n = 5) and congenital heart defects (n = 2), in line with PAX1 expression during early embryogenesis. Our results highlight new features of PAX1 deficiency, which are relevant to improving early diagnosis and identifying patients requiring corrective treatment.


Assuntos
Fatores de Transcrição Box Pareados , Imunodeficiência Combinada Severa , Humanos , Fatores de Transcrição Box Pareados/genética , Fenótipo , Linfócitos T , Timo , Imunodeficiência Combinada Severa/genética
13.
J Allergy Clin Immunol ; 152(6): 1619-1633.e11, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37659505

RESUMO

BACKGROUND: Chronic granulomatous disease (CGD) is caused by defects in any 1 of the 6 subunits forming the nicotinamide adenine dinucleotide phosphate oxidase complex 2 (NOX2), leading to severely reduced or absent phagocyte-derived reactive oxygen species production. Almost 50% of patients with CGD have inflammatory bowel disease (CGD-IBD). While conventional IBD therapies can treat CGD-IBD, their benefits must be weighed against the risk of infection. Understanding the impact of NOX2 defects on the intestinal microbiota may lead to the identification of novel CGD-IBD treatments. OBJECTIVE: We sought to identify microbiome and metabolome signatures that can distinguish individuals with CGD and CGD-IBD. METHODS: We conducted a cross-sectional observational study of 79 patients with CGD, 8 pathogenic variant carriers, and 19 healthy controls followed at the National Institutes of Health Clinical Center. We profiled the intestinal microbiome (amplicon sequencing) and stool metabolome, and validated our findings in a second cohort of 36 patients with CGD recruited through the Primary Immune Deficiency Treatment Consortium. RESULTS: We identified distinct intestinal microbiome and metabolome profiles in patients with CGD compared to healthy individuals. We observed enrichment for Erysipelatoclostridium spp, Sellimonas spp, and Lachnoclostridium spp in CGD stool samples. Despite differences in bacterial alpha and beta diversity between the 2 cohorts, several taxa correlated significantly between both cohorts. We further demonstrated that patients with CGD-IBD have a distinct microbiome and metabolome profile compared to patients without CGD-IBD. CONCLUSION: Intestinal microbiome and metabolome signatures distinguished patients with CGD and CGD-IBD, and identified potential biomarkers and therapeutic targets.


Assuntos
Microbioma Gastrointestinal , Doença Granulomatosa Crônica , Doenças Inflamatórias Intestinais , Humanos , Doença Granulomatosa Crônica/genética , NADPH Oxidases , Estudos Transversais
14.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37478401

RESUMO

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Assuntos
Eczema , Transplante de Células-Tronco Hematopoéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína da Síndrome de Wiskott-Aldrich/genética , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Terapia Genética/métodos , Eczema/etiologia , Eczema/metabolismo , Eczema/terapia
15.
Sci Immunol ; 8(82): eade2860, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083451

RESUMO

Inborn errors of TLR3-dependent type I IFN immunity in cortical neurons underlie forebrain herpes simplex virus-1 (HSV-1) encephalitis (HSE) due to uncontrolled viral growth and subsequent cell death. We report an otherwise healthy patient with HSE who was compound heterozygous for nonsense (R422*) and frameshift (P493fs9*) RIPK3 variants. Receptor-interacting protein kinase 3 (RIPK3) is a ubiquitous cytoplasmic kinase regulating cell death outcomes, including apoptosis and necroptosis. In vitro, the R422* and P493fs9* RIPK3 proteins impaired cellular apoptosis and necroptosis upon TLR3, TLR4, or TNFR1 stimulation and ZBP1/DAI-mediated necroptotic cell death after HSV-1 infection. The patient's fibroblasts displayed no detectable RIPK3 expression. After TNFR1 or TLR3 stimulation, the patient's cells did not undergo apoptosis or necroptosis. After HSV-1 infection, the cells supported excessive viral growth despite normal induction of antiviral IFN-ß and IFN-stimulated genes (ISGs). This phenotype was, nevertheless, rescued by application of exogenous type I IFN. The patient's human pluripotent stem cell (hPSC)-derived cortical neurons displayed impaired cell death and enhanced viral growth after HSV-1 infection, as did isogenic RIPK3-knockout hPSC-derived cortical neurons. Inherited RIPK3 deficiency therefore confers a predisposition to HSE by impairing the cell death-dependent control of HSV-1 in cortical neurons but not their production of or response to type I IFNs.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Humanos , Morte Celular , Encefalite por Herpes Simples/genética , Herpesvirus Humano 1/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
16.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004747

RESUMO

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Assuntos
DNA Ligases , Síndromes de Imunodeficiência , Humanos , DNA Ligases/genética , Autoimunidade/genética , Haploinsuficiência , DNA Ligase Dependente de ATP/genética , Síndromes de Imunodeficiência/genética , Mutação , DNA
18.
Front Pediatr ; 11: 1110115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891233

RESUMO

Granulomas have been defined as inflammatory infiltrates formed by recruitment of macrophages and T cells. The three-dimensional spherical structure typically consists of a central core of tissue resident macrophages which may merge into multinucleated giant cells surrounded by T cells at the periphery. Granulomas may be triggered by infectious and non-infectious antigens. Cutaneous and visceral granulomas are common in inborn errors of immunity (IEI), particularly among patients with chronic granulomatous disease (CGD), combined immunodeficiency (CID), and common variable immunodeficiency (CVID). The estimated prevalence of granulomas in IEI ranges from 1%-4%. Infectious agents causing granulomas such Mycobacteria and Coccidioides presenting atypically may be 'sentinel' presentations for possible underlying immunodeficiency. Deep sequencing of granulomas in IEI has revealed non-classical antigens such as wild-type and RA27/3 vaccine-strain Rubella virus. Granulomas in IEI are associated with significant morbidity and mortality. The heterogeneity of granuloma presentation in IEI presents challenges for mechanistic approaches to treatment. In this review, we discuss the main infectious triggers for granulomas in IEI and the major forms of IEI presenting with 'idiopathic' non-infectious granulomas. We also discuss models to study granulomatous inflammation and the impact of deep-sequencing technology while searching for infectious triggers of granulomatous inflammation. We summarize the overarching goals of management and highlight the therapeutic options reported for specific granuloma presentations in IEI.

19.
Semin Immunol ; 66: 101732, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36863139

RESUMO

The thymus is the crucial tissue where thymocytes develop from hematopoietic precursors that originate from the bone marrow and differentiate to generate a repertoire of mature T cells able to respond to foreign antigens while remaining tolerant to self-antigens. Until recently, most of the knowledge on thymus biology and its cellular and molecular complexity have been obtained through studies in animal models, because of the difficulty to gain access to thymic tissue in humans and the lack of in vitro models able to faithfully recapitulate the thymic microenvironment. This review focuses on recent advances in the understanding of human thymus biology in health and disease obtained through the use of innovative experimental techniques (eg. single cell RNA sequencing, scRNAseq), diagnostic tools (eg. next generation sequencing), and in vitro models of T-cell differentiation (artificial thymic organoids) and thymus development (eg. thymic epithelial cell differentiation from embryonic stem cells or induced pluripotent stem cells).


Assuntos
Linfócitos T , Timo , Animais , Humanos , Diferenciação Celular , Células Epiteliais , Biologia
20.
Cell ; 186(7): 1302-1304, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001495

RESUMO

CRISPR-Cas9-based base editing allows precise base editing to achieve conversion of adenosine to guanine or cytosine to thymidine. In this issue of Cell, McAuley et al. use adenine base editing to correct a single base-pair mutation causing human CD3δ deficiency, demonstrating superior efficiency of genetic correction with reduced undesired genetic alterations compared with standard CRISPR-Cas9 editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Doenças do Sistema Imunitário , Humanos , Adenina , Sistemas CRISPR-Cas/genética , Terapia Genética , Mutação , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA