Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
RSC Med Chem ; 15(6): 2018-2029, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38911160

RESUMO

In a recent paper in this journal (RSC Med. Chem., 2023, 14, 2429), we described an unusually strong impact of regiospecific exchange of phenylalanines by tyrosines in 10 gallium-68-labeled trimers of certain cyclic RGD peptides, c[XRGDLAXp(NMe)K] (X = F or Y), on non-specific organ uptakes. We found that there was, in part, no correlation of liver uptake with established polarity proxies, such as the octanol-water distribution coefficient (log D). Since this observation could not be explained straightforwardly, we suggested that the symmetry of the compounds had resulted in a synergistic interaction of certain components of the macromolecules. In the present work, we investigated whether a comparable effect also occurred for a series of 5 tetramers labeled with lutetium-177. We found that in contrast to the trimers, liver uptake of the tetramers was well correlated to their polarity, indicating that the unusual observations along the trimer series indeed was a unique feature, probably related to their particular symmetry. Since the Lu-177 labeled tetramers are also potential agents for treatment of a variety of αvß6-integrin expressing cancers, these were evaluated in mice bearing human lung adenocarcinoma xenografts. Due to their tumor-specific uptake and retention in biodistribution and SPECT imaging experiments, these compounds are considered a step forward on the way to αvß6-integrin-targeted anticancer agents. Furthermore, we noticed that the presence of tyrosines in general had a positive impact on the in vivo performance of our peptide multimers. In view of the fact that a corresponding rule was already proposed in the context of protein engineering, we argue in favor of considering peptide multimers as a special class of small or medium-sized proteins. In summary, we contend that the performance of peptide multimers is less determined by the in vitro characteristics (particularly, affinity and selectivity) of monomers, but rather by the peptides' suitability for the overall macromolecular design concept, and peptides containing tyrosines are preferred.

2.
Eur J Nucl Med Mol Imaging ; 51(11): 3191-3201, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38717591

RESUMO

PURPOSE: 68Ga-Trivehexin is an investigational PET radiopharmaceutical (NCT05799274) targeting αvß6-integrin for PET imaging of carcinomas. 177Lu-D0301 is a structurally related therapeutic peptide tetramer. However, it showed considerable kidney uptake in rodents, impeding clinical applicability. We therefore evaluated the impact of different kidney protection strategies on the biodistribution of both agents in normal and tumor-bearing mice. METHODS: Ex-vivo biodistribution of 68Ga-Trivehexin (90 min p.i.) and 177Lu-D0301 (90 min and 24 h p.i.) was determined in healthy C57BL/6N and H2009 (human lung adenocarcinoma) xenografted CB17-SCID mice without and with co-infusion of 100 µL of solutions containing 2.5% arginine + 2.5% lysine (Arg/Lys), 4% succinylated gelatin (gelofusine, gelo), or combinations thereof. Arg/Lys was injected either i.p. 30 min before and after the radiopharmaceutical, or i.v. 2 min before the radiopharmaceutical. Gelo was administered either i.v. 2 min prior activity, or pre-mixed and injected together with the radiopharmaceutical (n = 5 per group). C57BL/6N mice were furthermore imaged by PET (90 min p.i.) and SPECT (24 h p.i.). RESULTS: Kidney uptake of 68Ga-Trivehexin in C57BL/6N mice was reduced by 15% (Arg/Lys i.p.), 25% (Arg/Lys i.v.), and 70% (gelo i.v.), 90 min p.i., relative to control. 177Lu-D0301 kidney uptake was reduced by 2% (Arg/Lys i.p.), 41% (Arg/Lys i.v.), 61% (gelo i.v.) and 66% (gelo + Arg/Lys i.v.) 24 h p.i., compared to control. Combination of Arg/Lys and gelo provided no substantial benefit. Gelo furthermore reduced kidney uptake of 177Lu-D0301 by 76% (90 min p.i.) and 85% (24 h p.i.) in H2009 bearing SCID mice. Since tumor uptake was not (90 min p.i.) or only slightly reduced (15%, 24 h p.i.), the tumor/kidney ratio was improved by factors of 3.3 (90 min p.i.) and 2.6 (24 h p.i.). Reduction of kidney uptake was demonstrated by SPECT, which also showed that the remaining activity was located in the cortex. CONCLUSIONS: The kidney uptake of both investigated radiopharmaceuticals was more efficiently reduced by gelofusine (61-85%) than Arg/Lys (25-41%). Gelofusine appears particularly suitable for reducing renal uptake of αvß6-integrin targeted 177Lu-labeled peptide multimers because its application led to approximately three times higher tumor-to-kidney ratios. Since the incidence of severe adverse events (anaphylaxis) with succinylated gelatin products (reportedly 0.0062-0.038%) is comparable to that of gadolinium-based MRI or iodinated CT contrast agents (0.008% and 0.04%, respectively), clinical use of gelofusine during radioligand therapy appears feasible if similar risk management strategies as for contrast agents are applied.


Assuntos
Aminoácidos , Gelatina , Integrinas , Rim , Succinatos , Animais , Camundongos , Aminoácidos/administração & dosagem , Aminoácidos/efeitos adversos , Aminoácidos/farmacocinética , Antígenos de Neoplasias , Transporte Biológico , Linhagem Celular Tumoral , Radioisótopos de Gálio , Gelatina/administração & dosagem , Gelatina/efeitos adversos , Gelatina/farmacocinética , Integrinas/metabolismo , Rim/metabolismo , Rim/diagnóstico por imagem , Lutécio/administração & dosagem , Lutécio/efeitos adversos , Lutécio/farmacocinética , Camundongos Endogâmicos C57BL , Peptídeos/administração & dosagem , Peptídeos/efeitos adversos , Peptídeos/farmacocinética , Tomografia por Emissão de Pósitrons/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/administração & dosagem , Radioisótopos/efeitos adversos , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Segurança , Succinatos/administração & dosagem , Succinatos/efeitos adversos , Succinatos/farmacocinética , Distribuição Tecidual/efeitos dos fármacos , Ensaios Clínicos Fase I como Assunto
4.
Mol Pharm ; 21(4): 1827-1837, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38291706

RESUMO

Noninvasive imaging of the immune checkpoint protein programmed death ligand 1 (PD-L1; synonyms: CD274, B7-H1) holds great promise to improve patient selection and, thus, response rates for immune checkpoint therapy (ICT) with monoclonal antibodies targeting the PD1/PD-L1 axis. The PD-L1 specific peptide WL12 (cyclo(AcY-(NMe)A-N-P-H-L-Hyp-W-S-W(Me)-(NMe)Nle-(NMe)Nle-O-C)-G-NH2) was functionalized with the Gallium-68 chelator TRAP by means of click chemistry (CuAAC). The resulting conjugate TRAP-WL12 was labeled with Gallium-68 within 16 min, with approximately 90% radiochemical yield and 99% radiochemical purity, affording Ga-68-TRAP-WL12 with molar activities typically exceeding 100 MBq/nmol. This radiotracer was characterized by positron emission tomography (PET) imaging and ex vivo biodistribution in murine xenografts of nontransfected PD-L1 expressing tumor cell lines, MDA-MB-231 (human breast carcinoma), and H2009 (human lung adenocarcinoma). It showed a favorable biodistribution profile with rapid renal clearance and low background (tumor-to-blood ratio = 26.6, 3 h p.i.). Conjugation of the Ga-68-TRAP moiety to WL12 successfully mitigated the nonspecific uptake of this peptide in organs, particularly the liver. This was demonstrated by comparing Ga-68-TRAP-WL12 with the archetypical Ga-68-DOTA-WL12, for which tumor-to-liver ratios of 1.4 and 0.5, respectively, were found. Although immunohistochemistry (IHC) revealed a low PD-L1 expression in MDA-MB-213 and H2009 xenografts that corresponds well to the clinical situation, PET showed high tumor uptakes (6.6 and 7.3% injected activity per gram of tissue (iA/g), respectively) for Ga-68-TRAP-WL12. Thus, this tracer has the potential for routine clinical PD-L1 PET imaging because it detects even very low PD-L1 expression densities with high sensitivity and may open an avenue to replace PD-L1 IHC of biopsies as the standard means to select potential responders for ICT.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Radioisótopos de Gálio/química , Antígeno B7-H1/metabolismo , Xenoenxertos , Distribuição Tecidual , Peptídeos/química , Neoplasias Pulmonares/diagnóstico por imagem , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons/métodos , Pulmão/metabolismo
5.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36678553

RESUMO

"RGD" is frequently pictured as a ligand for αvß3-integrin and useful for molecular targeting of angiogenesis-which is about as simplistic as the idea that laser beams are green or red and particularly useful for arming spaceships. There is, however, much more to RGD. In particular, targeting angiogenesis is likely not the most significant stronghold of RGD-comprising constructs. RGD is the one-letter code of a very short peptide sequence, arginine-lysine-aspartate, which is recognized by eight different integrins, namely, α(IIb)ß3, α5ß1, α8ß1, and the five dimers that αv forms with ß1, ß3, ß5, ß6, and ß8. These 8 RGD receptors form an own subset among the entire class of 24 known integrins, which furthermore comprises another three distinct groups (4 collagen receptors, 4 laminin receptors, and 8 leukocyte receptors). However, the 8 RGD-recognizing integrins are far from being alike. They do not even share the same tissue prevalences and functions, but are expressed on fundamentally different cell types and fulfill the most diverse biological tasks. For example, α(IIb)ß3 is found on platelets and mediates thrombus formation, whereas αvß6- and αvß8-integrin are expressed on epithelial cells, activate TFG-ß, and thus may promote cancer progression and invasion as well as fibrosis. Recent non-clinical experiments and clinical findings suggest that the highly specific expression of αvß6-integrin by some carcinoma types, in combination with the availability of the corresponding small-molecule ligands, may open a multitude of new and promising avenues for improved cancer diagnosis and therapy, including, but not limited to, radiopharmaceutical approaches.

6.
Eur J Nucl Med Mol Imaging ; 49(4): 1136-1147, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34559266

RESUMO

PURPOSE: To develop a new probe for the αvß6-integrin and assess its potential for PET imaging of carcinomas. METHODS: Ga-68-Trivehexin was synthesized by trimerization of the optimized αvß6-integrin selective cyclic nonapeptide Tyr2 (sequence: c[YRGDLAYp(NMe)K]) on the TRAP chelator core, followed by automated labeling with Ga-68. The tracer was characterized by ELISA for activities towards integrin subtypes αvß6, αvß8, αvß3, and α5ß1, as well as by cell binding assays on H2009 (αvß6-positive) and MDA-MB-231 (αvß6-negative) cells. SCID-mice bearing subcutaneous xenografts of the same cell lines were used for dynamic (90 min) and static (75 min p.i.) µPET imaging, as well as for biodistribution (90 min p.i.). Structure-activity-relationships were established by comparison with the predecessor compound Ga-68-TRAP(AvB6)3. Ga-68-Trivehexin was tested for in-human PET/CT imaging of HNSCC, parotideal adenocarcinoma, and metastatic PDAC. RESULTS: Ga-68-Trivehexin showed a high αvß6-integrin affinity (IC50 = 0.047 nM), selectivity over other subtypes (IC50-based factors: αvß8, 131; αvß3, 57; α5ß1, 468), blockable uptake in H2009 cells, and negligible uptake in MDA-MB-231 cells. Biodistribution and preclinical PET imaging confirmed a high target-specific uptake in tumor and a low non-specific uptake in other organs and tissues except the excretory organs (kidneys and urinary bladder). Preclinical PET corresponded well to in-human results, showing high and persistent uptake in metastatic PDAC and HNSCC (SUVmax = 10-13) as well as in kidneys/urine. Ga-68-Trivehexin enabled PET/CT imaging of small PDAC metastases and showed high uptake in HNSCC but not in tumor-associated inflammation. CONCLUSIONS: Ga-68-Trivehexin is a valuable probe for imaging of αvß6-integrin expression in human cancers.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Pancreáticas , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio , Humanos , Integrina alfaVbeta3/metabolismo , Integrinas/metabolismo , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Distribuição Tecidual , Neoplasias Pancreáticas
7.
Front Oncol ; 11: 774017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869017

RESUMO

BACKGROUND: Prostate specific membrane antigen (PSMA) PET imaging has recently gained attention in glioblastoma (GBM) patients as a potential theranostic target for PSMA radioligand therapy. However, PSMA PET has not yet been established in a murine GBM model. Our goal was to investigate the potential of PSMA PET imaging in the syngeneic GL261 GBM model and to give an outlook regarding the potential of PMSA radioligand therapy in this model. METHODS: We performed an 18F-PSMA-1007 PET study in the orthotopic GL261 model (n=14 GBM, n=7 sham-operated mice) with imaging at day 4, 8, 11, 15, 18 and 22 post implantation. Time-activity-curves (TAC) were extracted from dynamic PET scans (0-120 min p. i.) in a subset of mice (n=4 GBM, n=3 sham-operated mice) to identify the optimal time frame for image analysis, and standardized-uptake-values (SUV) as well as tumor-to-background ratios (TBR) using contralateral normal brain as background were calculated in all mice. Additionally, computed tomography (CT), ex vivo and in vitro 18F-PSMA-1007 autoradiographies (ARG) were performed. RESULTS: TAC analysis of GBM mice revealed a plateau of TBR values after 40 min p. i. Therefore, a 30 min time frame between 40-70 min p. i. was chosen for PET quantification. At day 15 and later, GBM mice showed a discernible PSMA PET signal on the inoculation site, with highest TBRmean in GBM mice at day 18 (7.3 ± 1.3 vs. 1.6 ± 0.3 in shams; p=0.024). Ex vivo ARG confirmed high tracer signal in GBM compared to healthy background (TBRmean 26.9 ± 10.5 vs. 1.6 ± 0.7 in shams at day 18/22 post implantation; p=0.002). However, absolute uptake values in the GL261 tumor remained low (e.g., SUVmean 0.21 ± 0.04 g/ml at day 18) resulting in low ratios compared to dose-relevant organs (e.g., mean tumor-to-kidney ratio 1.5E-2 ± 0.5E-2). CONCLUSIONS: Although 18F-PSMA-1007 PET imaging of GL261 tumor-bearing mice is feasible and resulted in high TBRs, absolute tumoral uptake values remained low and hint to limited applicability of the GL261 model for PSMA-directed therapy studies. Further investigations are warranted to identify suitable models for preclinical evaluation of PSMA-targeted theranostic approaches in GBM.

8.
Cancers (Basel) ; 13(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34885066

RESUMO

For almost the entire period of the last two decades, translational research in the area of integrin-targeting radiopharmaceuticals was strongly focused on the subtype αvß3, owing to its expression on endothelial cells and its well-established role as a biomarker for, and promoter of, angiogenesis. Despite a large number of translated tracers and clinical studies, a clinical value of αvß3-integrin imaging could not be defined yet. The focus of research has, thus, been moving slowly but steadily towards other integrin subtypes which are involved in a large variety of tumorigenic pathways. Peptidic and non-peptidic radioligands for the integrins α5ß1, αvß6, αvß8, α6ß1, α6ß4, α3ß1, α4ß1, and αMß2 were first synthesized and characterized preclinically. Some of these compounds, targeting the subtypes αvß6, αvß8, and α6ß1/ß4, were subsequently translated into humans during the last few years. αvß6-Integrin has arguably attracted most attention because it is expressed by some of the cancers with the worst prognosis (above all, pancreatic ductal adenocarcinoma), which substantiates a clinical need for the respective theranostic agents. The receptor furthermore represents a biomarker for malignancy and invasiveness of carcinomas, as well as for fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF), and probably even for Sars-CoV-2 (COVID-19) related syndromes. Accordingly, the largest number of recent first-in-human applications has been reported for radiolabeled compounds targeting αvß6-integrin. The results indicate a substantial clinical value, which might lead to a paradigm change and trigger the replacement of αvß3 by αvß6 as the most popular integrin in theranostics.

9.
EJNMMI Res ; 11(1): 106, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34636990

RESUMO

BACKGROUND: In the context of nuclear medicine and theranostics, integrin-related research and development was, for most of the time, focused predominantly on 'RGD peptides' and the subtype αvß3-integrin. However, there are no less than 24 known integrins, and peptides without the RGD sequence as well as non-peptidic ligands play an equally important role as selective integrin ligands. On the other hand, multimerization is a well-established method to increase the avidity of binding structures, but multimeric radiopharmaceuticals have not made their way into clinics yet. In this review, we describe how these aspects have been interwoven in the framework of the German Research Foundation's multi-group interdisciplinary funding scheme CRC 824, yielding a series of potent PET imaging agents for selective imaging of various integrin subtypes. RESULTS: The gallium-68 chelator TRAP was utilized to elaborate symmetrical trimers of various peptidic and non-peptidic integrin ligands. Preclinical data suggested a high potential of the resulting Ga-68-tracers for PET-imaging of the integrins α5ß1, αvß8, αvß6, and αvß3. For the first three, we provide some additional immunohistochemistry data in human cancers, which suggest several future clinical applications. Finally, application of αvß3- and αvß6-integrin tracers in pancreatic carcinoma patients revealed that unlike αvß3-targeted PET, αvß6-integrin PET is not characterized by off-target uptake and thus, enables a substantially improved imaging of this type of cancer. CONCLUSIONS: Novel radiopharmaceuticals targeting a number of different integrins, above all, αvß6, have proven their clinical potential and will play an increasingly important role in future theranostics.

11.
Cancers (Basel) ; 13(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205778

RESUMO

Invasive nonfunctioning pituitary tumors (NFPTs) are non-resectable neoplasms associated with frequent relapse and significant comorbidities. Current treatments, including somatostatin receptor 2 (SSTR2)-directed somatostatin analogs (SSAs), often fail against NFPTs. Thus, identifying effective therapies is clinically relevant. As NFPTs express SSTR3 at high levels, pasireotide, a multireceptor-targeted SSA, might be beneficial. Here we evaluated pasireotide in the only representative model of spontaneous NFPTs (MENX rats) in vivo. Octreotide long-acting release (LAR), pasireotide LAR, or placebo, were administered to age-matched, tumor-bearing MENX rats of both sexes for 28 d or 56 d. Longitudinal high-resolution magnetic resonance imaging monitored tumor growth. While tumors in placebo-treated rats increased in volume over time, PTs in drug-treated rats displayed significant growth suppression, and occasional tumor shrinkage. Pasireotide elicited stronger growth inhibition. Radiological responses correlated with tumors' proliferation rates. Both SSAs, but especially pasireotide, were more effective in female vs. male rats. Basal Sstr3 expression was significantly higher in the former group. It is noteworthy that female human NFPTs patients also have a trend towards higher SSTR3 expression. Altogether, our studies provide the rationale for testing pasireotide in patients with residual/recurrent NFPTs. If confirmed, the sex-related SSTR3 expression might be used as criteria to stratify NFPTs patients for treatment with pasireotide.

14.
EJNMMI Res ; 10(1): 133, 2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33128636

RESUMO

PURPOSE: As a major activator of transforming growth factor ß (TGF-ß), the RGD receptor αvß8-integrin is involved in pathogenic processes related to TGF-ß dysregulation, such as tumor growth, invasion, and radiochemoresistance, metastasis and tumor cell stemness, as well as epithelial-mesenchymal transition. The novel positron emission tomography (PET) radiopharmaceutical Ga-68-Triveoctin for in vivo mapping of αvß8-integrin expression might enhance the prognosis of certain tumor entities, as well as support and augment TGF-ß-targeted therapeutic approaches. METHODS: Monomeric and trimeric conjugates of cyclo(GLRGDLp(NMe)K(pent-4-ynoic amide)) were synthesized by click chemistry (CuAAC), labeled with Ga-68, and evaluated in MeWo (human melanoma) xenografted SCID mice by means of PET and ex-vivo biodistribution. αvß8-integrin expression in murine tissues was determined by ß8-IHC. A human subject received a single injection of 173 MBq of Ga-68-Triveoctin and underwent 3 subsequent PET/CT scans at 25, 45, and 90 min p.i.. RESULTS: The trimer Ga-68-Triveoctin exhibits a 6.7-fold higher αvß8-integrin affinity than the monomer (IC50 of 5.7 vs. 38 nM, respectively). Accordingly, biodistribution showed a higher tumor uptake (1.9 vs. 1.0%IA/g, respectively) but a similar baseline upon blockade (0.25%IA/g for both). IHC showed an intermediate ß8-expression in the tumor while most organs and tissues were found ß8-negative. Low non-target tissue uptakes (< 0.4%IA/g) confirmed a low degree of unspecific binding. Due to its hydrophilicity (log D = - 3.1), Ga-68-Triveoctin is excreted renally and shows favorable tumor/tissue ratios in mice (t/blood: 6.7; t/liver: 6.8; t/muscle: 29). A high kidney uptake in mice (kidney-to-blood and -to-muscle ratios of 126 and 505, respectively) is not reflected by human PET (corresponding values are 15 and 30, respectively), which furthermore showed notable uptakes in coeliac and choroid plexus (SUVmean 6.1 and 9.7, respectively, 90 min p.i.). CONCLUSION: Ga-68-Triveoctin enables sensitive in-vivo imaging αvß8-integrin expression in murine tumor xenografts. PET in a human subject confirmed a favorable biodistribution, underscoring the potential of Ga-68-Triveoctin for mapping of αvß8-integrin expression in a clinical setting.

15.
Chembiochem ; 21(19): 2836-2843, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32359011

RESUMO

αv ß6 Integrin is an epithelial transmembrane protein that recognizes latency-associated peptide (LAP) and primarily activates transforming growth factor beta (TGF-ß). It is overexpressed in carcinomas (most notably, pancreatic) and other conditions associated with αv ß6 integrin-dependent TGF-ß dysregulation, such as fibrosis. We have designed a trimeric Ga-68-labeled TRAP conjugate of the αv ß6 -specific cyclic pentapeptide SDM17 (cyclo[RGD-Chg-E]-CONH2 ) to enhance αv ß6 integrin affinity as well as target-specific in-vivo uptake. Ga-68-TRAP(SDM17)3 showed a 28-fold higher αv ß6 affinity than the corresponding monomer Ga-68-NOTA-SDM17 (IC50 of 0.26 vs. 7.4 nM, respectively), a 13-fold higher IC50 -based selectivity over the related integrin αv ß8 (factors of 662 vs. 49), and a threefold higher tumor uptake (2.1 vs. 0.66 %ID/g) in biodistribution experiments with H2009 tumor-bearing SCID mice. The remarkably high tumor/organ ratios (tumor-to-blood 11.2; -to-liver 8.7; -to-pancreas 29.7) enabled high-contrast tumor delineation in PET images. We conclude that Ga-68-TRAP(SDM17)3 holds promise for improved clinical PET diagnostics of carcinomas and fibrosis.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico por imagem , Antígenos de Neoplasias/análise , Complexos de Coordenação/química , Integrinas/análise , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Animais , Compostos Aza/química , Química Click , Complexos de Coordenação/síntese química , Feminino , Radioisótopos de Gálio , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Peptídeos Cíclicos/química , Ácidos Fosfínicos/química , Piperidinas/química , Compostos Radiofarmacêuticos/síntese química , Células Tumorais Cultivadas
16.
J Med Chem ; 62(4): 2024-2037, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30657681

RESUMO

Integrins play important roles in physiological and pathophysiological processes. Among the RGD-recognizing integrin subtypes, the αvß8 receptor is emerging as an attractive target because of its involvement in various illnesses, such as autoimmune diseases, viral infections, and cancer. However, its functions have, so far, not been investigated in living subjects mainly because of the lack of a selective αvß8 ligand. Here, we report the design and potential medical applications of a cyclic octapeptide as the first highly selective small-molecule ligand for αvß8. Remarkably, this compound displays low nanomolar αvß8 binding affinity and a strong discriminating power of at least 2 orders of magnitude versus other RGD-recognizing integrins. Peptide functionalization with fluorescent or radioactive labels enables the selective imaging of αvß8-positive cells and tissues. This new probe will pave the way for detailed characterization of the distinct (patho)physiological role of this relatively unexplored integrin, providing a basis to fully exploit the potential of αvß8 as a target for molecular diagnostics and personalized therapy regimens.


Assuntos
Integrinas/metabolismo , Peptídeos Cíclicos/farmacologia , Compostos de Boro/metabolismo , Compostos de Boro/farmacologia , Linhagem Celular Tumoral , Desenho de Fármacos , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Radioisótopos de Gálio , Humanos , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/metabolismo , Estudo de Prova de Conceito , Compostos Radiofarmacêuticos/metabolismo , Compostos Radiofarmacêuticos/farmacologia
17.
J Nucl Med ; 60(1): 71-78, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237214

RESUMO

The prostate-specific membrane antigen (PSMA)-targeted radiotracers 68Ga/177Lu-PSMA-I&T and 99mTc-PSMA-I&S (for i maging and s urgery) are currently successfully used for clinical PET imaging, radionuclide therapy, and radioguided surgery of metastatic prostate cancer. To additionally exploit the high sensitivity and spatial resolution of fluorescence imaging for improved surgical guidance, a PSMA-I&T-based hybrid tracer, PSMA-I&F (DOTAGA-k(Sulfo-Cy5)-y-nal-k-Sub-KuE), has been developed and evaluated. Methods: The in vitro PSMA-targeting efficiency of PSMA-I&F, the reference PSMA-I&T, and their corresponding natGa-/68Ga- and natLu/177Lu counterparts was determined in LNCaP cells via competitive binding assays (IC50) and dual-tracer radioligand and fluorescence internalization studies. Biodistribution and small-animal PET imaging studies were performed in CB17 SCID and LNCaP xenograft-bearing SHO mice, respectively, and complemented by intraoperative far-red fluorescence imaging using a clinical laparoscope. Additionally, fully automated serial cryosectioning and fluorescence imaging of 1 tumor-bearing animal as well as PSMA immunohistochemistry and fluorescence microscopy of organ cryosections (tumor, kidney, spleen) were also performed. Results: Compared with the parent PSMA-I&T analogs, the PSMA affinities of PSMA-I&F and its natGa-/natLu-complexes remained high and unaffected by dye conjugation (7.9 < IC50 < 10.5 nM for all ligands). The same was observed for the internalization of 68Ga- and 177Lu-PSMA-I&F. In vivo, blood clearance of 68Ga- and 177Lu-PSMA-I&F was only slightly delayed by high plasma protein binding (94%-95%), and very low accumulation in nontarget organs was observed already at 1 h after injection. Dynamic PET imaging confirmed PSMA-specific (as demonstrated by coinjection of 2-PMPA) uptake into the LNCaP xenograft (4.5% ± 1.8 percentage injected dose per gram) and the kidneys (106% ± 23 percentage injected dose per gram). Tumor-to-background ratios of 2.1, 5.2, 9.6, and 9.6 for blood, liver, intestines, and muscle, respectively, at 1 h after injection led to excellent imaging contrast in 68Ga-PSMA-I&F PET and in intraoperative fluorescence imaging. Furthermore, fluorescence imaging of tissue cryosections allowed high-resolution visualization of intraorgan PSMA-I&F distribution in vivo and its correlation with PSMA expression as determined by immunohistochemistry. Conclusion: Thus, with its high PSMA-targeting efficiency and favorable pharmacokinetic profile, 68Ga/177Lu-PSMA-I&F serves as an excellent proof-of-concept compound for the general feasibility of PSMA-I&T-based hybrid imaging. The PSMA-I&T scaffold represents a versatile PSMA-targeted lead structure, allowing relatively straightforward adaptation to the different structural requirements of dedicated nuclear or hybrid imaging agents.


Assuntos
Glutamato Carboxipeptidase II/metabolismo , Oligopeptídeos/síntese química , Oligopeptídeos/metabolismo , Imagem Óptica/métodos , Neoplasias da Próstata/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Técnicas de Química Sintética , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Masculino , Camundongos , Microscopia de Fluorescência , Medicina Nuclear , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia , Traçadores Radioativos , Cirurgia Assistida por Computador , Distribuição Tecidual
18.
ACS Omega ; 3(2): 2428-2436, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30023833

RESUMO

The epithelial integrin αvß6 is expressed by many malignant carcinoma cell types, including pancreatic cancer, and thus represents a promising target for radionuclide therapy. The peptide cyclo(FRGDLAFp(NMe)K) was decorated with different chelators (DOTPI, DOTAGA, and DOTA). The Lu(III) complexes of these conjugates exhibited comparable αvß6 integrin affinities (IC50 ranging from 0.3 to 0.8 nM) and good selectivities against other integrins (IC50 for αvß8 >43 nM; for α5ß1 >238 nM; and for αvß3, αvß5, and αIIbß3 >1000 nM). Although different formal charges of the Lu(III) chelates (ranging from 0 to 4) resulted in strongly varying degrees of hydrophilicity (log D ranging from -3.0 to -4.1), biodistributions in murine H2009 xenografts of the Lu-177-labeled compounds (except the DOTPI derivative) were quite similar and comparable to our previously reported αvß6 integrin positron emission tomography tracer Ga-68-avebehexin. Hence, combinations of existing Ga-68- and Lu-177-labeled c(FRGDLAFp(NMe)K) derivatives could be utilized for αvß6 integrin-targeted theranostics, whereas our data nonetheless suggest that further improvement of pharmacokinetics might be necessary to ensure clinical success.

19.
Mol Pharm ; 15(9): 4296-4302, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30011372

RESUMO

Radiopharmaceuticals targeting the enzyme prostate-specific membrane antigen (PSMA; synonyms: glutamate carboxypeptidase II, NAALADase; EC 3.4.17.21) have recently emerged as powerful agents for diagnosis and therapy (theranostics) of prostate carcinoma (PCa). The radiation doses for therapeutic application of such compounds are limited by substantial uptakes in kidneys and salivary glands, with excess doses reportedly leading to radiotoxicity-related adverse effects, such as kidney insufficiency or xenostomia. On the basis of the triazacyclononane-triphosphinate (TRAP) chelator, monomeric to trimeric conjugates of the PSMA inhibitor motif lysine-urea-glutamic acid (KuE) were synthesized by means of Cu(I)-mediated (CuAAC) or 5-aza-dibenzocyclooctyne (DBCO)-driven, strain-promoted click chemistry (SPAAC), which were labeled with gallium-68 for application in positron emission tomography (PET), and characterized in terms of PSMA affinity (determined in cellular displacement assays against I-125-BA) and lipophilicity (expressed as log D). Using subcutaneous murine LNCaP (PSMA-positive human prostate carcinoma) xenografts, the influence of ligand multiplicity, affinity, polarity, and molar activity (i.e., mass dose) on the uptakes in tumor, kidney, salivary, and background (muscle) was analyzed by means of region-of-interest (ROI) based quantification of small-animal PET imaging data. As expected, trimerization of the KuE motif resulted in high PSMA affinities (IC50 ranging from 6.0-1.5 nM). Of all parameters, molar activity/cold mass had the most pronounced influence on PET uptakes. Because accumulation in nontumor tissues was effected to a larger extent than tumor uptakes, lower molar activities resulted in substantially better tumor-to-organ ratios. For example, for one trimer, 68Ga-AhxKuE3 (IC50 = 1.5 ± 0.3 nM, log D = -3.8 ± 0.1), a higher overall amount of active compound (12 pmol vs 2 nmol, equivalent to molar activities of 1200 and 8 MBq/nmol) resulted in a remarkable reduction of the kidney-to-tumor ratio from 11.4 to 1.4, respectively, at 60 min p.i. Our study suggests that, for PSMA-targeting radiopharmaceuticals, molar activity has a more pronounced influence on small-animal PET imaging results than structural or in vitro parameters.


Assuntos
Radioisótopos de Gálio/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glicoproteínas de Membrana/antagonistas & inibidores , Tomografia por Emissão de Pósitrons/métodos , Animais , Glutamato Carboxipeptidase II/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Compostos Radiofarmacêuticos/análise
20.
Front Chem ; 6: 170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29876344

RESUMO

In order to rationalize the influence of FeIII contamination on labeling with the 68Ga eluted from 68Ge/68Ga-generator, a detailed investigation was carried out on the equilibrium properties, formation and dissociation kinetics of GaIII- and FeIII-complexes of 1,4,7-triazacyclononane-1,4,7-tris(methylene[2-carboxyethylphosphinic acid]) (H6TRAP). The stability and protonation constants of the [Fe(TRAP)]3- complex were determined by pH-potentiometry and spectrophotometry by following the competition reaction between the TRAP ligand and benzhydroxamic acid (0.15 M NaNO3, 25°C). The formation rates of [Fe(TRAP)] and [Ga(TRAP)] complexes were determined by spectrophotometry and 31P-NMR spectroscopy in the pH range 4.5-6.5 in the presence of 5-40 fold HxTRAP(x-6) excess (x = 1 and 2, 0.15 M NaNO3, 25°C). The kinetic inertness of [Fe(TRAP)]3- and [Ga(TRAP)]3- was examined by the trans-chelation reactions with 10 to 20-fold excess of HxHBED(x-4) ligand by spectrophotometry at 25°C in 0.15 M NaCl (x = 0,1 and 2). The stability constant of [Fe(TRAP)]3- (logKFeL = 26.7) is very similar to that of [Ga(TRAP)]3- (logKGaL = 26.2). The rates of ligand exchange reaction of [Fe(TRAP)]3- and [Ga(TRAP)]3- with HxHBED(x-4) are similar. The reactions take place quite slowly via spontaneous dissociation of [M(TRAP)]3-, [M(TRAP)OH]4- and [M(TRAP)(OH)2]5- species. Dissociation half-lives (t1/2) of [Fe(TRAP)]3- and [Ga(TRAP)]3- complexes are 1.1 × 105 and 1.4 × 105 h at pH = 7.4 and 25°C. The formation reactions of [Fe(TRAP)]3- and [Ga(TRAP)]3- are also slow due to the formation of the unusually stable monoprotonated [*M(HTRAP)]2- intermediates [*logKGa(HL) = 10.4 and *logKFe(HL) = 9.9], which are much more stable than the [*Ga(HNOTA)]+ intermediate [*logKGa(HL) = 4.2]. Deprotonation and transformation of the monoprotonated [*M(HTRAP)]2- intermediates into the final complex occur via OH--assisted reactions. Rate constants (kOH) characterizing the OH--driven deprotonation and transformation of [* Ga(HTRAP)]2- and [*Fe(HTRAP)]2- intermediates are 1.4 × 105 M-1s-1 and 3.4 × 104 M-1s-1, respectively. In conclusion, the equilibrium and kinetic properties of [Fe(TRAP)] and [Ga(TRAP)] complexes are remarkably similar due to the close physico-chemical properties of FeIII and GaIII-ions. However, a slightly faster formation of [Ga(TRAP)] over [Fe(TRAP)] provides a rationale for a previously observed, selective complexation of 68GaIII in presence of excess FeIII.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA