Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698934

RESUMO

Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures, and neurologic abnormalities (PASNA) as well as in autism spectrum disorder. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization showed elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone/renin ratio, and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induced tonic-clonic seizures. Neurologic abnormalities included hyperlocomotion, impaired performance in the rotarod test, impaired nest building, and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels, and rotarod performance responded to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.


Assuntos
Adenoma , Transtorno do Espectro Autista , Hiperaldosteronismo , Humanos , Masculino , Feminino , Camundongos , Animais , Aldosterona , Hiperaldosteronismo/tratamento farmacológico , Hiperaldosteronismo/genética , Isradipino , Cálcio , Mutação , Convulsões
2.
J Clin Med ; 11(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887942

RESUMO

Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) regulates intestinal carbohydrate and ion transporters including cystic fibrosis transmembrane conductance regulator (CFTR). We hypothesized that loss of SGK1 could reduce CFTR fluid secretion and MVID diarrhea. Using CRISPR-Cas9 approaches, we generated R26CreER;MYO5Bf/f conditional single knockout (cMYO5BKO) and R26CreER;MYO5Bf/f;SGK1f/f double knockout (cSGK1/MYO5B-DKO) mice. Tamoxifen-treated cMYO5BKO mice resulted in characteristic features of human MVID including severe diarrhea, microvillus inclusions (MIs) in enterocytes, defective apical traffic, and depolarization of transporters. However, apical CFTR distribution was preserved in crypts and depolarized in villus enterocytes, and CFTR high expresser (CHE) cells were observed. cMYO5BKO mice displayed increased phosphorylation of SGK1, PDK1, and the PDK1 target PKCι in the intestine. Surprisingly, tamoxifen-treated cSGK1/MYO5B-DKO mice displayed more severe diarrhea than cMYO5BKO, with preservation of apical CFTR and CHE cells, greater fecal glucose and reduced SGLT1 and GLUT2 in the intestine. We conclude that loss of SGK1 worsens carbohydrate malabsorption and diarrhea in MVID.

3.
ACR Open Rheumatol ; 4(9): 760-770, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35708944

RESUMO

OBJECTIVE: To determine if single-nucleotide polymorphisms (SNPs) in DNA repair genes are enriched in individuals with systemic lupus erythematosus (SLE) and if they are sufficient to confer a disease phenotype in a mouse model. METHODS: Human exome chip data of 2499 patients with SLE and 1230 healthy controls were analyzed to determine if variants in 10 different mismatch repair genes (MSH4, EXO1, MSH2, MSH6, MLH1, MSH3, POLH, PMS2, ML3, and APEX2) were enriched in individuals with SLE. A mouse model of the MSH6 SNP, which was found to be enriched in individuals with SLE, was created using CRISPR/Cas9 gene targeting. Wildtype mice and mice heterozygous and homozygous for the MSH6 variant were then monitored for 2 years for the development of autoimmune phenotypes, including the presence of high levels of antinuclear antibodies (ANA). Additionally, somatic hypermutation frequencies and spectra of the intronic region downstream of the VH J558-rearranged JH4 immunoglobulin gene was characterized from Peyer's patches. RESULTS: Based on the human exome chip data, the MSH6 variant (rs63750897, p.Ser503Cys) is enriched among patients with SLE versus controls after we corrected for ancestry (odds ratio = 8.39, P = 0.0398). Mice homozygous for the MSH6 variant (Msh6S502C/S502C ) harbor significantly increased levels of ANA. Additionally, the Msh6S502C/S502C mice display a significant increase in the infiltration of CD68+ cells (a marker for monocytes and macrophages) into the lung alveolar space as well as apoptotic cells. Furthermore, characterization of somatic hypermutation in these mice reveals an increase in the DNA polymerase η mutational signature. CONCLUSION: An MSH6 mutation that is enriched in humans diagnosed with lupus was identified. Mice harboring this Msh6 mutation develop increased autoantibodies and an inflammatory lung disease. These results suggest that the human MSH6 variant is linked to the development of SLE.

4.
DNA Repair (Amst) ; 109: 103247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826736

RESUMO

Oxidative DNA damage as a result of normal cellular metabolism, inflammation, or exposure to exogenous DNA damaging agents if left unrepaired, can result in genomic instability, a precursor to cancer and other diseases. Nth-like DNA glycosylase 1 (NTHL1) is an evolutionarily conserved bifunctional DNA glycosylase that primarily removes oxidized pyrimidine lesions. NTHL1 D239Y is a germline variant identified in both heterozygous and homozygous state in the human population. Here, we have generated a knockin mouse model carrying Nthl1 D227Y (mouse homologue of D239Y) using CRISPR-cas9 genome editing technology and investigated the cellular effects of the variant in the heterozygous (Y/+) and homozygous (Y/Y) state using murine embryonic fibroblasts. We identified a significant increase in double stranded breaks, genomic instability, replication stress and impaired proliferation in both the Nthl1 D227Y heterozygous Y/+ and homozygous mutant Y/Y MEFs. Importantly, we identified that the presence of the D227Y variant interferes with repair by the WT protein, possibly by binding and shielding the lesions. The cellular phenotypes observed in D227Y mutant MEFs suggest that both the heterozygous and homozygous carriers of this NTHL1 germline mutation may be at increased risk for the development of DNA damage-associated diseases, including cancer.


Assuntos
Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Fibroblastos/enzimologia , Instabilidade Genômica , Mutação de Sentido Incorreto , Animais , DNA/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Camundongos , Camundongos Mutantes , Mutagênicos/toxicidade , Estresse Oxidativo , Vitamina K 3/toxicidade
5.
Kidney Int ; 99(5): 1102-1117, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33412162

RESUMO

Focal segmental glomerulosclerosis (FSGS) is a podocytopathy leading to kidney failure, whose molecular cause frequently remains unresolved. Here, we describe a rare MYO9A loss of function nonsense heterozygous mutation (p.Arg701∗) as a possible contributor to disease in a sibling pair with familial FSGS/proteinuria. MYO9A variants of uncertain significance were identified by whole exome sequencing in a cohort of 94 biopsy proven patients with FSGS. MYO9A is an unconventional myosin with a Rho-GAP domain that controls epithelial cell junction assembly, crosslinks and bundles actin and deactivates the small GTPase protein encoded by the RHOA gene. RhoA activity is associated with cytoskeleton regulation of actin stress fiber formation and actomyosin contractility. Myo9A was detected in mouse and human podocytes in vitro and in vivo. Knockin mice carrying the p.Arg701∗MYO9A (Myo9AR701X) generated by gene editing developed proteinuria, podocyte effacement and FSGS. Kidneys and podocytes from Myo9AR701X/+ mutant mice revealed Myo9A haploinsufficiency, increased RhoA activity, decreased Myo9A-actin-calmodulin interaction, impaired podocyte attachment and migration. Our results indicate that Myo9A is a novel component of the podocyte cytoskeletal apparatus that regulates RhoA activity and podocyte function. Thus, Myo9AR701X/+ knock-in mice recapitulate the proband FSGS phenotype, demonstrate that p.R701X Myo9A is an FSGS-causing mutation in mice and suggest that heterozygous loss-of-function MYO9A mutations may cause a novel form of human autosomal dominant FSGS. Hence, identification of MYO9A pathogenic variants in additional individuals with familial or sporadic FSGS is needed to ascertain the gene contribution to disease.


Assuntos
Glomerulosclerose Segmentar e Focal , Miosinas/genética , Podócitos , Animais , Proteínas Ativadoras de GTPase/genética , Glomerulosclerose Segmentar e Focal/genética , Humanos , Camundongos , Miosinas/metabolismo , Fenótipo
6.
Sci Rep ; 9(1): 3094, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816224

RESUMO

Extracellular vesicles (EVs) are cellular derived particles found throughout the body in nearly all tissues and bodily fluids. EVs contain biological molecules including small RNAs and protein. EVs are proposed to be transferred between cells, notably, cells of the immune system. Tools that allow for in vivo EV labeling while retaining the ability to resolve cellular sources and timing of release are required for a full understanding of EV functions. Fluorescent EV fusion proteins are useful for the study of EV biogenesis, release, and identification of EV cellular recipients. Among the most plentiful and frequently identified EV proteins is CD9, a tetraspanin protein. A transgenic mouse containing a CRE-recombinase inducible CAG promoter driven CD9 protein fused to Turbo-GFP derived from the copepod Pontellina plumata was generated as an EV reporter. The transgenic inducible GFP EV reporter (TIGER) mouse was electroporated with CAG-CRE plasmids or crossed with tamoxifen inducible CAG-CRE-ERT2 or nestin-CRE-ERT2 mice. CD9-GFP labeled cells included glutamine synthetase and glial fibrillary acidic protein positive astrocytes. Cortical astrocytes released ~136 nm EVs that contained CD9. Intraventricular injected EVs were taken up by CD11b/IBA1 positive microglia surrounding the lateral ventricles. Neonatal electroporation and shRNA mediated knockdown of Rab27a in dorsal subventricular zone NSCs and astrocytes increased the number of CD11b/IBA1 positive rounded microglia. Neonatal astrocyte EVs had a unique small RNA signature comprised of morphogenic miRNAs that induce microglia cytokine release. The results from this study demonstrate that inducible CD9-GFP mice will provide the EV community with a tool that allows for EV labeling in a cell-type specific manner while simultaneously allowing in vivo experimentation and provides evidence that EVs are required immunomodulators of the developing nervous system.


Assuntos
Astrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Tetraspanina 29/metabolismo , Animais , Astrócitos/citologia , Biomarcadores/metabolismo , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Microglia/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tetraspanina 29/genética
7.
Circ Res ; 124(6): 874-880, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30707082

RESUMO

RATIONALE: Inhibition of miR-33 reduces atherosclerotic plaque burden, but miR-33 deficient mice are predisposed to the development of obesity and metabolic dysfunction. The proatherogenic effects of miR-33 are thought to be in large part because of its repression of macrophage cholesterol efflux, through targeting of Abca1 (ATP-binding cassette subfamily A member 1). However, targeting of other factors may also be required for the beneficial effects of miR-33, and currently available approaches have not allowed researchers to determine the specific impact of individual miRNA target interactions in vivo. OBJECTIVE: In this work, we sought to determine how specific disruption of Abca1 targeting by miR-33 impacts macrophage cholesterol efflux and atherosclerotic plaque formation in vivo. METHODS AND RESULTS: We have generated a novel mouse model with specific point mutations in the miR-33 binding sites of the Abca1 3'untranslated region, which prevents targeting by miR-33. Abca1 binding site mutant ( Abca1BSM) mice had increased hepatic ABCA1 expression but did not show any differences in body weight or metabolic function after high fat diet feeding. Macrophages from Abca1BSM mice also had increased ABCA1 expression, as well as enhanced cholesterol efflux and reduced foam cell formation. Moreover, LDLR (low-density lipoprotein receptor) deficient animals transplanted with bone marrow from Abca1BSM mice had reduced atherosclerotic plaque formation, similar to mice transplanted with bone marrow from miR-33 knockout mice. CONCLUSION: Although the more pronounced phenotype of miR-33 deficient animals suggests that other targets may also play an important role, our data clearly demonstrate that repression of ABCA1 is primarily responsible for the proatherogenic effects of miR-33. This work shows for the first time that disruption of a single miRNA/target interaction can be sufficient to mimic the effects of miRNA deficiency on complex physiological phenotypes in vivo and provides an approach by which to assess the impact of individual miRNA targets.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/fisiologia , Colesterol/metabolismo , Macrófagos/metabolismo , MicroRNAs/fisiologia , Placa Aterosclerótica/etiologia , Transportador 1 de Cassete de Ligação de ATP/genética , Animais , Sítios de Ligação , Camundongos , Camundongos Knockout , Receptores de LDL/fisiologia
8.
PLoS One ; 8(4): e58585, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560038

RESUMO

The fidelity of chromosomal segregation during cell division is important to maintain chromosomal stability in order to prevent cancer and birth defects. Although several spindle-associated molecular motors have been shown to be essential for cell division, only a few chromosome arm-associated motors have been described. Here, we investigated the role of Kinesin 5b (Kif5b) during female mouse meiotic cell development and mitotic cell division. RNA interference (RNAi)-mediated silencing of Kif5b in mouse oocytes induced significant delay in germinal vesicle breakdown (GVBD) and failure in extrusion of the first polar body (PBE). In mitotic cells, knockdown of Kif5b leads to centrosome amplification and a chromosomal segregation defect. These data suggest that KIF5B is critical in suppressing chromosomal instability at the early stages of female meiotic cell development and mitotic cell division.


Assuntos
Centrossomo/metabolismo , Segregação de Cromossomos , Regulação da Expressão Gênica no Desenvolvimento , Cinesinas/genética , Oócitos/metabolismo , Fuso Acromático/genética , Animais , Centrossomo/patologia , Instabilidade Cromossômica , Feminino , Cinesinas/antagonistas & inibidores , Cinesinas/metabolismo , Meiose/genética , Camundongos , Mitose/genética , Oócitos/patologia , RNA Interferente Pequeno/genética , Fuso Acromático/metabolismo , Fuso Acromático/patologia
9.
Stem Cells ; 31(5): 895-905, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23335078

RESUMO

Discovery of the cellular and molecular mechanisms of induced pluripotency has been hampered by its low efficiency and slow kinetics. Here, we report an experimental system with multicolor time-lapse microscopy that permits direct observation of pluripotency induction at single cell resolution, with temporal intervals as short as 5 minutes. Using granulocyte-monocyte progenitors as source cells, we visualized nascent pluripotent cells that emerge from a hematopoietic state. We engineered a suite of image processing and analysis software to annotate the behaviors of the reprogramming cells, which revealed the highly dynamic cell-cell interactions associated with early reprogramming. We observed frequent cell migration, which can lead to sister colonies, satellite colonies, and colonies of mixed genetic makeup. In addition, we discovered a previously unknown morphologically distinct two-cell intermediate of reprogramming, which occurs prior to other reprogramming landmarks. By directly visualizing the reprogramming process with E-cadherin inhibition, we demonstrate that E-cadherin is required for proper cellular interactions from an early stage of reprogramming, including the two-cell intermediate. The detailed cell-cell interactions revealed by this imaging platform shed light on previously unappreciated early reprogramming dynamics. This experimental system could serve as a powerful tool to dissect the complex mechanisms of early reprogramming by focusing on the relevant but rare cells with superb temporal and spatial resolution.


Assuntos
Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Reprogramação Celular/fisiologia , Animais , Caderinas/antagonistas & inibidores , Caderinas/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Imagem com Lapso de Tempo/métodos
10.
Proc Natl Acad Sci U S A ; 107(45): 19473-8, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20962279

RESUMO

In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease, including malignancy, autoimmune disease, Parkinson disease, and osteoporosis. We conditionally deleted the GBA1 gene in hematopoietic and mesenchymal cell lineages using an Mx1 promoter. Although this mouse fully recapitulated human GD1, cytokine measurements, microarray analysis, and cellular immunophenotyping together revealed widespread dysfunction not only of macrophages, but also of thymic T cells, dendritic cells, and osteoblasts. The severe osteoporosis was caused by a defect in osteoblastic bone formation arising from an inhibitory effect of the accumulated lipids LysoGL-1 and GL-1 on protein kinase C. This study provides direct evidence for the involvement in GD1 of multiple cell lineages, suggesting that cells other than macrophages may be worthwhile therapeutic targets.


Assuntos
Doença de Gaucher/patologia , Deleção de Genes , Glucosilceramidase/deficiência , Macrófagos/patologia , Animais , Doença de Gaucher/genética , Glucosilceramidase/genética , Células-Tronco Hematopoéticas/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Osteoporose/etiologia , Fenótipo , Regiões Promotoras Genéticas
11.
Mol Pharmacol ; 73(1): 243-51, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17959714

RESUMO

Multidrug resistance protein 4 (MRP4; ABCC4) is a member of the MRP/ATP-binding cassette family serving as a transmembrane transporter involved in energy-dependent efflux of anticancer/antiviral nucleotide agents and of physiological substrates, including cyclic nucleotides and prostaglandins (PGs). Phenotypic consequences of mrp4 deficiency were investigated using mrp4-knockout mice and derived immortalized mouse embryonic fibroblast (MEF) cells. Mrp4 deficiency caused decreased extracellular and increased intracellular levels of cAMP in MEF cells under normal and forskolin-stimulated conditions. Mrp4 deficiency and RNA interference-mediated mrp4 knockdown led to a pronounced reduction in extracellular PGE(2) but with no accumulation of intracellular PGE(2) in MEF cells. This result was consistent with attenuated cAMP-dependent protein kinase activity and reduced cyclooxygenase-2 (Cox-2) expression in mrp4-deficient MEF cells, suggesting that PG synthesis is restrained along with a lack of PG transport caused by mrp4 deficiency. Mice lacking mrp4 exhibited no outward phenotypes but had a decrease in plasma PGE metabolites and an increase in inflammatory pain threshold compared with wild-type mice. Collectively, these findings imply that mrp4 mediates the efflux of PGE(2) and concomitantly modulates cAMP mediated signaling for balanced PG synthesis in MEF cells. Abrogation of mrp4 affects the regulation of peripheral PG levels and consequently alters inflammatory nociceptive responses in vivo.


Assuntos
AMP Cíclico/metabolismo , Dinoprostona/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Dor/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Camundongos , Camundongos Knockout
12.
Development ; 129(11): 2733-47, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12015300

RESUMO

The members of the AP-2 family of transcription factors play important roles during mammalian development and morphogenesis. AP-2gamma (Tcfap2c - Mouse Genome Informatics) is a retinoic acid-responsive gene implicated in placental development and the progression of human breast cancer. We show that AP-2gamma is present in all cells of preimplantation embryos and becomes restricted to the extra-embryonic lineages at the time of implantation. To study further the biological function of AP-2gamma, we have generated Tcfap2c-deficient mice by gene disruption. The majority of Tcfap2c(-/-) mice failed to survive beyond 8.5 days post coitum (d.p.c.). At 7.5 d.p.c., Tcfap2c(-/-) mutants were typically arrested or retarded in their embryonic development in comparison to controls. Morphological and molecular analyses of mutants revealed that gastrulation could be initiated and that anterior-posterior patterning of the epiblast remained intact. However, the Tcfap2c mutants failed to establish a normal maternal-embryonic interface, and the extra-embryonic tissues were malformed. Moreover, the trophoblast-specific expression of eomesodermin and Cdx2, two genes implicated in FGF-responsive trophoblast stem cell maintenance, was significantly reduced. Chimera studies demonstrated that AP-2gamma plays no major autonomous role in the development of the embryo proper. By contrast, the presence of AP-2gamma in the extra-embryonic membranes is required for normal development of this compartment and also for survival of the mouse embryo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário e Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Blastocisto/fisiologia , Neoplasias da Mama/patologia , Implantação do Embrião , Feminino , Genótipo , Humanos , Camundongos , Camundongos Knockout , Morfogênese , Placenta/fisiologia , Reação em Cadeia da Polimerase , Gravidez , Mapeamento por Restrição , Fator de Transcrição AP-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA