Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 521, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082297

RESUMO

HIV elite controllers maintain a population of CD4 + T cells endowed with high avidity for Gag antigens and potent effector functions. How these HIV-specific cells avoid infection and depletion upon encounter with the virus remains incompletely understood. Ex vivo characterization of single Gag-specific CD4 + T cells reveals an advanced Th1 differentiation pattern in controllers, except for the CCR5 marker, which is downregulated compared to specific cells of treated patients. Accordingly, controller specific CD4 + T cells show decreased susceptibility to CCR5-dependent HIV entry. Two controllers carried biallelic mutations impairing CCR5 surface expression, indicating that in rare cases CCR5 downregulation can have a direct genetic cause. Increased expression of ß-chemokine ligands upon high-avidity antigen/TCR interactions contributes to autocrine CCR5 downregulation in controllers without CCR5 mutations. These findings suggest that genetic and functional regulation of the primary HIV coreceptor CCR5 play a key role in promoting natural HIV control.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Controladores de Elite , Infecções por HIV/imunologia , HIV-1/imunologia , Receptores CCR5/metabolismo , Internalização do Vírus , Quimiocinas , Regulação para Baixo , Regulação da Expressão Gênica , Produtos do Gene gag/metabolismo , Infecções por HIV/virologia , Antígenos de Histocompatibilidade Classe II , Humanos , Mutação , Receptores CCR5/genética , Receptores CXCR3
2.
J Immunol ; 199(10): 3437-3452, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993513

RESUMO

Rare patients who spontaneously control HIV replication provide a useful model to inform HIV vaccine development. HIV controllers develop particularly efficient antiviral CD4+ T cell responses mediated by shared high-affinity TCRs. To determine whether the candidate DNA vaccine ADVAX could induce similar responses, we analyzed Gag-specific primary CD4+ T cells from healthy volunteers who received ADVAX DNA by electroporation. Vaccinated volunteers had an immunodominant response to the Gag293 epitope with a functional avidity intermediate between that of controllers and treated patients. The TCR repertoire of Gag293-specific CD4+ T cells proved highly biased, with a predominant usage of the TCRß variable gene 2 (TRBV2) in vaccinees as well as controllers. TCRα variable gene (TRAV) gene usage was more diverse, with the dominance of TRAV29 over TRAV24 genes in vaccinees, whereas TRAV24 predominated in controllers. Sequence analysis revealed an unexpected degree of overlap between the specific repertoires of vaccinees and controllers, with the sharing of TRAV24 and TRBV2 public motifs (>30%) and of public clonotypes characteristic of high-affinity TCRs. MHC class II tetramer binding revealed a broad HLA-DR cross-restriction, explaining how Gag293-specific public clonotypes could be selected in individuals with diverse genetic backgrounds. TRAV29 clonotypes also proved cross-restricted, but conferred responses of lower functional avidity upon TCR transfer. In conclusion, DNA vaccination by electroporation primed for TCR clonotypes that were associated with HIV control, highlighting the potential of this vaccine delivery method. To our knowledge, this study provides the first proof-of-concept that clonotypic analysis may be used as a tool to monitor the quality of vaccine-induced responses and modulate these toward "controller-like" responses.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Células Clonais , Reações Cruzadas , Eletroporação , ELISPOT , Antígenos HLA-DR/metabolismo , Humanos , Ativação Linfocitária , Ligação Proteica , Vacinas de DNA , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA