Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biochem Cell Biol ; 140: 106072, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455058

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder associated with several complications. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) represent an emerging type of MSCs with high plasticity and immunoregulatory capabilities and are useful for treating inflammation-related disorders such as T2DM. However, the pathogenic microenvironment of T2DM may affect their therapeutic potential. We aimed to examine the impact of the diabetic milieu on the immunomodulatory/anti-inflammatory potential of AT-MSCs. METHODS: We assessed the proliferation potential, cell surface expression of MSC-characteristic markers and immunomodulatory markers, along with the gene expression and protein secretion of pro-inflammatory and anti-inflammatory cytokines and adipokines in AT-MSCs derived from T2DM patients (dAT-MSCs) vs. those derived from non-diabetic volunteers (ndAT-MSCs). Furthermore, we evaluated the IFN-γ priming effect on both groups. RESULTS: Our data revealed comparable proliferative activities in both groups. Flow cytometric analysis results showed a lower expression of CD200 and CD276 on dAT-MSCs vs. ndAT-MSCs. qPCR demonstrated upregulation of IL-1ß associated with a downregulation of IL-1RN in dAT-MSCs vs. ndAT-MSCs. IFN-γ priming induced an elevation in CD274 expression associated with IDO1 and ILRN overexpression and IL-1ß downregulation in both groups. ELISA analysis uncovered elevated levels of secreted IL-1ß, TNF, and visfatin/NAMPT in dAT-MSCs, whereas IL-1RA and IDO levels were reduced. ELISA results were also evident in the secretome of dAT-MSCs upon IFN-γ priming. CONCLUSIONS: This study suggests that the T2DM milieu alters the immunomodulatory characteristics of AT-MSCs with a shift towards a proinflammatory phenotype which may restrain their autologous therapeutic use. Furthermore, our findings indicate that IFN-γ priming could be a useful strategy for enhancing dAT-MSC anti-inflammatory potential.


Assuntos
Diabetes Mellitus Tipo 2 , Imunomodulação , Interferon gama , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Secretoma
2.
Pathol Oncol Res ; 25(2): 559-566, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30361904

RESUMO

MicroRNAs (miRNAs) trigger a two-layer regulatory network directly or through transcription factors and their co-regulators. Unlike miR-375, the role of miR-145 and miR-224 in inhibiting or driving cancer cell migration is controversial. This study is a step towards addressing the potential of miR-375, miR-145 and miR-224 expression modulation to inhibit colorectal carcinoma (CRC) cells migration in vitro through regulation of non-target genes VEGFA, TGFß1, IGF1, CD105 and CD44. Transwell migration assay results revealed a significant subdue of migration ability of cells transfected with miR-375 and miR-145 mimics and miR-224 inhibitor. Real time PCR data showed that expression of VEGFA, TGFß1, IGF1, CD105 and CD44 was downregulated as a consequence of exogenous re-expression of miR-375 and inhibition of miR-224. On the other hand, ectopic expression of miR-145 did not affect VEGFA, TGFß1 and CD44 expression, while it elevated CD105 and suppressed IGF1 expression. MAP4K4, a predicted target of miR-145, was validated as a target that could play a role in miR-145-mediated regulation of migration. At mRNA level, no change was observed in expression of MAP4K4 in cells with restored expression of miR-145, while western blotting analysis revealed a 25% reduction of protein level. By applying luciferase reporter assay, a significant decrease in luciferase activity was observed, supporting that miR-145 directly target 3' UTR of MAP4K4. The study highlighted the involvement of non-target genes VEGFA, TGFß1, IGF1, CD105 and CD44 in mediating anti- and pro-migratory effect of miR-375 and miR-224, respectively, and validated MAP4K4 as a direct target of anti-migratory miR-145.


Assuntos
Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Células HCT116 , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA