RESUMO
BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.
Assuntos
Ácido 3-Hidroxibutírico , Apoptose , Glucose , Neoplasias Pulmonares , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Estresse Oxidativo/efeitos dos fármacos , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido 3-Hidroxibutírico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antígeno AC133/metabolismo , Antígeno AC133/genéticaRESUMO
Introduction: Imidazo[1,2-a]pyridine derivatives with diverse pharmacological properties and curcumin, as a potential natural anti-inflammatory compound, are promising compounds for cancer treatment. This study aimed to synthesize a novel imidazo[1,2-a]pyridine derivative, (MIA), and evaluate its anti-inflammatory activity and effects on nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways, and their target genes, alone and in combination with curcumin, in MDA-MB-231 and SKOV3 cell lines. Methods: We evaluated the interaction between imidazo[1,2-a]pyridine ligand, curcumin, and NF-κB p50 protein, using molecular docking studies. MTT assay was used to investigate the impacts of compounds on cell viability. To evaluate the NF-κB DNA binding activity and the level of inflammatory cytokines in response to the compounds, ELISA-based methods were performed. In addition, quantitative polymerase chain reaction (qPCR) and western blotting were carried out to analyze the expression of genes and investigate NF-κB and STAT3 signaling pathways. Results: Molecular docking studies showed that MIA docked into the NF-κB p50 subunit, and curcumin augmented its binding. The MTT assay results indicated that MIA and its combination with curcumin reduced cell viability. According to the results of the ELISA-based methods, MIA lowered the levels of inflammatory cytokines and suppressed NF-κB activity. In addition, real-time PCR and Griess test results showed that the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) genes, and nitrite production were reduced by MIA. Furthermore, the western blotting analysis demonstrated that MIA increased the expression of inhibitory κB (IκBα) and B-cell lymphoma 2 (Bcl-2)-associated X proteins (BAX), and suppressed the STAT3 phosphorylation, and Bcl-2 expression. Our findings revealed that curcumin had a potentiating role and enhanced all the anti-inflammatory effects of MIA. Conclusion: This study indicated that the anti-inflammatory activity of MIA is exerted by suppressing the NF-κB and STAT3 signaling pathways in MDA-MB-231 and SKOV3 cancer cell lines.
RESUMO
BACKGROUND: Epigenetic modifications, particularly histone acetylation-deacetylation and its related enzymes, such as sirtuin 1 (SIRT1) deacetylase, may have substantial roles in the pathogenesis of obesity and its associated health issues. This study aimed to evaluate global histone acetylation status and SIRT1 gene expression in children and adolescents with obesity and their association with metabolic and anthropometric parameters. METHODS: This study included 60 children and adolescents, 30 with obesity and 30 normal-weight. The evaluation consisted of the analysis of global histone acetylation levels and the expression of the SIRT1 gene in peripheral blood mononuclear cells, by specific antibody and real-time PCR, respectively. Additionally, insulin, fasting plasma glucose, lipid profile and tumor necrosis factor α (TNF-α) levels were measured. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Metabolic syndrome was determined based on the diagnostic criteria established by IDF. RESULTS: Individuals with obesity, particularly those with insulin resistance, had significantly higher histone acetylation levels compared to control group. Histone acetylation was positively correlated with obesity indices, TNF-α, insulin, and HOMA-IR. Additionally, a significant decrease in SIRT1 gene expression was found among obese individuals, which was negatively correlated with the histone acetylation level. Furthermore, SIRT1 expression levels showed a negative correlation with various anthropometric and metabolic parameters. CONCLUSION: Histone acetylation was enhanced in children and adolescents with obesity, potentially resulting from down-regulation of SIRT1, and could play a role in the obesity-associated metabolic abnormalities and insulin resistance. Targeting global histone acetylation modulation might be considered as an epigenetic approach for early obesity management.
Assuntos
Resistência à Insulina , Obesidade Infantil , Humanos , Adolescente , Criança , Obesidade Infantil/genética , Resistência à Insulina/fisiologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Histonas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetilação , Leucócitos Mononucleares/metabolismo , Insulina/metabolismo , Índice de Massa CorporalRESUMO
Acetyl-11-keto-beta-boswellic acid (AKBA), a potent anti-inflammatory compound purified from Boswellia species, was investigated in a preclinical study for its potential in preventing and treating non-alcoholic fatty liver disease (NAFLD), the most common chronic inflammatory liver disorder. The study involved thirty-six male Wistar rats, equally divided into prevention and treatment groups. In the prevention group, rats were given a high fructose diet (HFrD) and treated with AKBA for 6 weeks, while in the treatment group, rats were fed HFrD for 6 weeks and then given a normal diet with AKBA for 2 weeks. At the end of the study, various parameters were analyzed including liver tissues and serum levels of insulin, leptin, adiponectin, monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta (TGF-ß), interferon gamma (INF-Ï), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). Additionally, the expression levels of genes related to the inflammasome complex and peroxisome proliferator-activated receptor gamma (PPAR-Ï), as well as the levels of phosphorylated and non-phosphorylated AMP-activated protein kinase alpha-1 (AMPK-α1) protein, were measured. The results showed that AKBA improved NAFLD-related serum parameters and inflammatory markers and suppressed PPAR-Ï and inflammasome complex-related genes involved in hepatic steatosis in both groups. Additionally, AKBA prevented the reduction of the active and inactive forms of AMPK-α1 in the prevention group, which is a cellular energy regulator that helps suppress NAFLD progression. In conclusion, AKBA has a beneficial effect on preventing and avoiding the progression of NAFLD by preserving lipid metabolism, improving hepatic steatosis, and suppressing liver inflammation.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Ratos , Masculino , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamassomos/metabolismo , Frutose/metabolismo , Frutose/farmacologia , Frutose/uso terapêutico , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ratos Wistar , Fígado/metabolismo , Dieta , Inflamação/metabolismoRESUMO
Background: Breast and ovarian cancers are two common malignancies in women and a leading cause of death globally. The aim of the present study was to explore the effects of a novel chalcone derivative 1-(4-(methylsulfonyl)phenyl)-3-(phenylthio)-3-(p-tolyl)propane-1-one (MPP) individually or combined with curcumin, a well-known herbal medicine with anticancer properties, as a new combination therapy on inflammatory pathways in breast and ovarian cancer cell lines. Methods: LPS-induced NF-κB DNA-binding activity and the levels of proinflammatory cytokines were measured in the MPP- and MPP-curcumin combination-treated MDA-MB-231 and SKOV3 cells by ELISA-based methods. The expression of COX2, INOS, and MMP9 genes and nitrite levels was also evaluated by real-time qRT-PCR and Griess method, respectively. IκB levels were evaluated by Western blotting. Results: MPP significantly inhibited the DNA-binding activity of NF-κB in each cell line and subsequently suppressed the expression of downstream genes including COX2, MMP9, and INOS. The levels of proinflammatory cytokines, as well as NO, were also decreased in response to MPP. All the effects of MPP were enhanced by the addition of curcumin. MPP, especially when combined with curcumin, caused a remarkable increase in the concentration of IκB. Conclusion: MPP and its coadministration with curcumin effectively reduced the activity of the NF-κB signaling pathway, leading to a reduced inflammatory response in the environment of cancer cells. Thus, MPP, either alone or combined with curcumin, might be considered an effective remedy for the suppression of inflammatory processes in breast and ovarian cancer cells.
Assuntos
Chalconas , Curcumina , Neoplasias Ovarianas , Feminino , Humanos , NF-kappa B/metabolismo , Metaloproteinase 9 da Matriz , Ciclo-Oxigenase 2 , Citocinas/metabolismo , Proteínas I-kappa B , Neoplasias Ovarianas/tratamento farmacológicoRESUMO
BACKGROUND: Understanding the molecular mechanism underlying the pathophysiology of primary skeletal tumors is crucial due to the tumor-related complications, incidence at a young age, and tumor recurrence. METHODS AND RESULTS: The local expression pattern of MMP-9 as an active matrix-degrading protease was detected in 180 bone tissues, including 90 tumors and 90 noncancerous tissues, utilizing real-time qRT-PCR at the mRNA level and immunohistochemistry at the protein level. The correlation of the MMP-9 expression level with the patient's clinical pathological characteristics and the aggressiveness of the tumor was evaluated. The diagnostic significance of MMP-9 and the model of association of variables and MMP-9 expression and their predictive values were determined. Mean mRNA expression was higher in all types of primary bone tumors than their paired non-cancerous tissues. Osteosarcoma and Ewing's sarcoma expressed higher levels of MMP-9 compared to benign giant cell tumors, and the MMP-9 expression level was significantly correlated with the size, metastasis, and recurrence of the malignant tumor. A consistent expression pattern was demonstrated for MMP-9 protein levels in tissues. In addition, the MMP-9 gene and protein levels significantly discriminate between bone tumors and normal tissue, as well as benign and malignant tumors, and could predict potentially malignant traits such as tumor grade and metastasis. CONCLUSIONS: The data propose that MMP-9 may be involved in the proliferation and invasion of primary bone tumors and has the potential to monitor and treat the progression of malignant tumors.
Assuntos
Neoplasias Ósseas , Metaloproteinase 9 da Matriz , Neoplasias Ósseas/metabolismo , Osso e Ossos/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Use of natural products has been proposed as an efficient method in modulation of immune system and treatment of cancers. The aim of this study was to investigate the potential of cryptotanshinone (CPT), naringenin, and their combination in modulating the immune response towards Th1 cells and the involvement of JAK2/STAT3 signaling pathway in these effects. METHODS: Mouse models of delayed type hypersensitivity (DTH) were produced and treated with naringenin and CPT. The proliferation of spleen cells were assessed by Bromodeoxyuridine (BrdU) assay. Flowcytometry and enzyme-linked immunosorbent assay (ELISA) tests were employed to evaluate subpopulation of T-lymphocytes and the levels of cytokines, respectively. The JAK/STAT signaling pathway was analyzed by Western blotting. RESULTS: We showed higher DTH, increased lymphocyte proliferation, decreased tumor growth and reduced JAK2/STAT3 phosphorylation in mice treated with naringenin and CPT. Moreover, a significant decline in the production of IL-4 and an upsurge in the production of IFN-γ by splenocytes were observed. Additionally, the population of intra-tumor CD4+CD25+Foxp3+ T cells was significantly lower in naringenin + CPT treated animals than that in controls. CONCLUSION: Naringenin-CPT combination could exert immunomodulatory effects, suggesting this combination as a novel complementary therapeutic regimen for breast cancer.
Assuntos
Neoplasias , Linfócitos T Reguladores , Animais , Flavanonas , Ativação Linfocitária , Camundongos , FenantrenosRESUMO
Cancer stem cells (CSCs) play an essential role in cancer development, metastasis, relapse, and resistance to treatment. In this article, the effects of three synthesized ZnO nanofluids on proliferation, apoptosis, and stemness markers of breast cancer stem-like cells are reported. The antiproliferative and apoptotic properties of ZnO nanoparticles were evaluated on breast cancer stem-like cell-enriched mammospheres by MTS assay and flowcytometry, respectively. The expression of stemness markers, including WNT1, NOTCH1, ß-catenin, CXCR4, SOX2, and ALDH3A1 was assessed by real-time PCR. Western blotting was used to analyze the phosphorylation of Janus kinase 2 (JAK2) and Signal Transducer and Activator of Transcription 3 (STAT3). Markers of stemness were significantly decreased by ZnO nanofluids, especially sample (c) with code ZnO-148 with a different order of addition of polyethylene glycol solution at the end of formulation, which considerably decreased all the markers compared to the controls. All the studied ZnO nanofluids considerably reduced viability and induced apoptosis of spheroidal and parental cells, with ZnO-148 presenting the most effective activity. Using CD95L as a death ligand and ZB4 as an extrinsic apoptotic pathway blocker, it was revealed that none of the nanoparticles induced apoptosis through the extrinsic pathway. Results also showed a marked inhibition of the JAK/STAT pathway by ZnO nanoparticles; confirmed by downregulation of Mcl-1 and Bcl-XL expression. The present data demonstrated that ZnO nanofluids could combat breast CSCs via decreasing stemness markers, stimulating apoptosis, and suppressing JAK/STAT activity.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Nanopartículas , Células-Tronco Neoplásicas/efeitos dos fármacos , Pontos Quânticos , Óxido de Zinco/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos , Proteína Ligante Fas/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Óxido de Zinco/administração & dosagemRESUMO
BACKGROUND: Colorectal cancer is the third leading to death type of cancer in the world. The therapeutic guideline varied between different methods. As the main therapeutic guideline is chemotherapy, recent studies had shown utilization of natural products in combination with conventional medication, elevate the efficiency of chemotherapeutic methods. Kombucha is a traditional beverage obtained from the fermentation of green tea as a rich source of flavonoid medicinal plant. This study aimed to evaluate the natural potential of combination therapy of this natural product with doxorubicin as a chemotherapeutic agent. MATERIALS AND METHODS: The study was performed as in vitro evaluation of biological activity of kombucha on HCT-116 cell line (human colon cancer cell line). The cytotoxic effect of different kombucha beverages (fermented green tea) in comparison with green tea extract was evaluated by dimethylthiazolyl tetrazolium bromide (MTT) assay. In the next step, anticancer activity of doxorubicin as a general guideline chemotherapeutic agent in combination with kombucha was evaluated by cell cycle analysis and apoptosis assay flow cytometry. Apoptotic genes expression pattern was determined using real-time polymerase chain reaction. The experiments were designed in three independent replications and statistically analyzed using SPSS software. RESULTS: The results show that kombucha compared with the green tea extract caused more (1.2 fold) early apoptosis induction and G0/G1 phase arrest. Moreover, kombucha increased the expression levels of p21, p53, and B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein genes (2, 2.5, and 1.5 fold, respectively) while it decreased Bcl-2 gene expression level (5-8 fold) compared with doxorubicin alone. Combination of kombucha with doxorubicin shows 2-fold increased G0/G1 phase compared with the doxorubicin treatment. CONCLUSION: This result indicated that kombucha caused boosted anticancer activity of doxorubicin agent. These findings suggest that kombucha may be has an assistor and useful role in colorectal cancer treatment align with chemotherapy.
RESUMO
BACKGROUND: Permanent neonatal diabetes mellitus (PNDM) presents with dehydration and hyperglycemia, which usually occurs during the first 12 months of life. Activating mutations of beta-cell adenosine triphosphate-sensitive potassium [KATP] channel subunits that cause opening of the channel are associated with PNDM. Some patients with PNDM respond to administration of a sulfonylurea derivative, which has long action on blood glucose even during hypoglycemia and has an apoptotic effect on beta cells. However, there have been no reports regarding treatment with meglitinide (repaglinide), which has rapid and short duration of action during the rise in blood glucose after meals that is more similar to beta cell function. It has no effects during hypoglycemia, so it does not cause neurological damage, and has no apoptotic effect on beta cells. We report herein the effects of repaglinide administration in the management and clinical outcome of two patients with PNDM during 9 and 10 years of follow-up. CASE PRESENTATION: Two Iranian infants were brought to our institution with poor general condition, dehydration, lethargy, and poor feeding. They had diabetic ketoacidosis at 52 days and 3.5 months of age, respectively. Their genetic analysis revealed mutations in the KCNJ11 gene encoding KIR6.2, so they both had PNDM. After treatment of diabetic ketoacidosis with insulin, they responded to sulfonylurea (glibenclamide) treatment, but were switched to repaglinide because of blood sugar fluctuations in terms of hyper- and hypoglycemia. Repaglinide was administered with the dosage of 0.04 mg/kg/day divided before every meal. RESULTS: The patients were 10 and 9 years old at the last visit, with normal growth parameters. The values of self-monitored blood glucose were well-controlled, and the hemoglobin A1C (HbA1C) levels ranged from 3.6 to 6.4% during the follow-up period. There was no complication of diabetes, neurological disorder, or adverse effects related to repaglinide. CONCLUSION: In every neonate or infant < 6 months of age with diabetes mellitus, PNDM should be considered. A trial of oral repaglinide can be performed and substituted for glibenclamide for prevention of hypoglycemia, neurological damage, and apoptosis of beta cells during long-term administration.
Assuntos
Diabetes Mellitus , Hipoglicemiantes , Benzamidas , Carbamatos , Humanos , Hipoglicemiantes/uso terapêutico , Irã (Geográfico) , Mutação , PiperidinasRESUMO
BACKGROUND: Sestrin2 and beclin1 are two newly found proteins that have essential roles in autophagy. This study attempted to evaluate the plasma concentrations of sestrin2 and beclin1 in women with polycystic ovary syndrome (PCOS) and healthy controls and to explore the clinical value of these proteins as novel biomarkers for PCOS. METHODS: In this case-control study, plasma levels of sestrin2 and beclin1, fasting blood sugar (FBS), lipid profile, insulin, and androgens were evaluated in 63 women (31 patients and 32 controls). Sestrin2 and beclin1 levels were determined using enzyme-linked immunosorbent assay (ELISA). Descriptive statistics, correlation coefficients, logistic regression, and ROC curve analyses were used in this study. RESULTS: Plasma sestrin2 levels of the subjects with PCOS (40.74 [24.39-257.70]) were significantly lower than those of healthy subjects (255.78 [25.46-528.66]; p-value = 0.040). ROC curve analysis showed that a cutoff value of 420.5 ng/L had an appropriate sensitivity (83.87%) and specificity (46.88%) for discriminating individuals with and without PCOS, with the area under the curve (95% CI) of 0.648 (0.518 to 0.764), p = 0.036. There were no statistically significant differences between the two groups concerning plasma levels of beclin1, biochemical parameters, blood pressure, and anthropometric features. CONCLUSION: Our findings highlight the dysregulation of sestrin2 as a marker of autophagy in PCOS and its potential usefulness as a novel biomarker for PCOS. Further research is needed to better understand the role of this protein in the pathophysiology of PCOS and its value as a diagnostic tool for the evaluation of PCOS patients.
Assuntos
Proteína Beclina-1/sangue , Biomarcadores/sangue , Proteínas Nucleares/sangue , Síndrome do Ovário Policístico/diagnóstico , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Síndrome do Ovário Policístico/sangue , Prognóstico , Curva ROCRESUMO
Breast cancer (BC) is one of the most common lethal diseases in women worldwide. Recent evidence has shown that covalently closed Circular RNA (circRNA) deregulation is observed in different human malignancies and cancers. Lately, circRNAs are being considered as a new diagnostic biomarker; however, the mechanism and the correlation of action between circRNAs and BC are still unclear. In the present study, we try to investigate the expression level of hsa_circ_0005046 and hsa_circ_0001791 in BC. By using quantitative real-time polymerase chain reaction (qRT-PCR), expression profiles of candidate circRNAs were detected in 60 BC tissue and paired adjacent normal tissues. Furthermore, the clinicopathological relation and diagnostic value were estimated. Our results showed the higher expression levels of hsa_circ_0005046 and hsa_circ_0001791 in BC tissues compared to paired adjacent normal tissues with P value (P < 0.0001) for both circRNAs, and the area under the receiver operating characteristic (ROC) curve was 0.857 and 1.0, respectively; in addition, a total 10 miRNAs that can be targeted by each candidate circRNAs was predicted base on bioinformatics databases. Taken together, for the first time, the results of our study presented high expression levels of hsa_circ_0005046 and hsa_circ_00017916 in BC; although there was no direct correlation between the high expression level of both circRNAs with clinic pathological factors, except hsa_circ_0001791 association with estrogen receptors (ER), high ROC curve in expressed samples indicated that both circRNAs could be used as a new diagnostic biomarker for BC. Moreover, miRNAs selection tools predicted that miR-215 and mir-383-5p which have a tumor suppressor role in BC can be targeted by our candidate circRNAs to affect the PI3K/AKT pathway; in conclusion, further studies are required to validate the oncogene role of our candidate circRNAs through the PI3k pathway.
RESUMO
NAD is mainly biosynthesized by the enzymatic action of nicotinamide phosphoribosyltransferase (NAMPT) through the salvage pathway. NAD is indispensable for the proper function and metabolism of all living cells, including cancer cells. Our previous researches revealed that inhibition of NAMPT by miRNA (miR) could suppress NAD levels and thereby hinder the growth and promotion of breast cancer (BC). Therefore, the current study was undertaken to investigate the inhibitory effects of miR-613 on NAMPT and BC cells' survival. Bioinformatics analysis and luciferase reporter assay confirmed that NAMPT 3'-untranslated region is a direct target for miR-613. The expression of miR-613 was noticed to be significantly decreased in both clinical tissue samples and BC cells by real-time PCR. Following transfection with miR-613 mimic, the expression of miR-613 was elevated in the BC cells leading to inhibition of NAMPT expression at both mRNA and protein level as measured by real-time PCR and western blotting, respectively. Inhibition of NAMPT led to a remarkable reduction in the concentration of NAD in the BC cells. The transfection also declined cell viability roughly 40% in MD Anderson-Metastatic Breast-231 (MDA-MB-231) cells. Consistently, the apoptosis rate was remarkably increased, around 65% in these cells as assayed by labeling the cells with Annexin V-fluorescein isothiocyanate (FITC) and Propidium Iodide. Targeting the NAMPT-mediated NAD salvage pathway by miR-613 is a novel approach for managing BC, which is worth further investigation.
Assuntos
Neoplasias da Mama/metabolismo , Citocinas/genética , MicroRNAs/genética , Nicotinamida Fosforribosiltransferase/genética , Adulto , Apoptose/genética , Neoplasias da Mama/genética , Morte Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Citocinas/metabolismo , Feminino , Humanos , Irã (Geográfico) , MicroRNAs/metabolismo , Pessoa de Meia-Idade , NAD/genética , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismoRESUMO
BACKGROUND: Pituitary adenomas are benign brain tumors that cause considerable morbidity and neurological symptoms. SOX9 as a regulatory transcriptional mediator affects normal and tumor cell growth with an undefined role in pituitary adenomas pathogenesis. Thus, in the present study, the expression pattern of SOX9 in GH-secreting pituitary tumors and normal pituitary tissues is investigated. METHODS: The SOX9 gene expression level was evaluated in 60 pituitary tissues including different types of GH-secreting adenomas and normal pituitary tissues through Real-Time PCR. The protein level of SOX9 was assessed using immunohistochemistry. The correlations of SOX9 gene and protein expression level with the patient's clinical and pathological features were considered. RESULTS: The SOX9 over-expression was detected in GH-secreting adenomas tumor tissues compared to normal pituitary tissues which were accompanied by overexpression of SOX9 protein in tumor tissues. The over-expression of SOX9 had a significant impact on GH-secreting adenomas tumor incidence with the odds ratio of 8.4 and the diagnostic value of SOX9 was considerable. The higher level of SOX9 expression was associated with invasive and macro tumors in GH-secreting pituitary adenoma patients. The positive correlation of SOX9 gene and protein level was observed and the tumor size and tumor invasive features were valuable in predicting SOX9 expression level in GH-producing pituitary tumors. CONCLUSION: The study provided the first shreds of evidence regarding the expression pattern of SOX9 in the GH- secreting pituitary adenomas at both gene and protein levels which may emphasize the possible involvement of SOX9 as a mediator in pituitary adenoma tumor formation also open up new intrinsic molecular mechanism regarding pituitary adenoma pathogenesis.
Assuntos
Adenoma/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Fatores de Transcrição SOX9/genética , Acromegalia/genética , Acromegalia/metabolismo , Acromegalia/patologia , Adenoma/metabolismo , Adenoma/patologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Regulação Neoplásica da Expressão Gênica , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima/genéticaRESUMO
BACKGROUND: Considering the advantages of using medicinal herbs as supplementary treatments to sensitize conventional anti-cancer drugs, studying functional mechanisms and regulatory effects of Echinacea purpurea (as a non-cannabinoid plant) and Cannabis sativa (as a cannabinoid plant) are timely and required. The potential effects of such herbs on lung cancer cell growth, apoptosis, cell cycle distribution, cellular reactive oxygen species (ROS) level, caspase activity and their cannabinomimetic properties on the CB2 receptor are addressed in the current study. METHODS: The cytotoxic effect of both herb extracts on the growth of lung cancer cells (A549) was assessed using the MTT assay. The annexin-V-FITC staining and propidium iodide (PI) staining methods were applied for the detection of apoptosis and cell cycle distribution using flow cytometry. The cellular level of ROS was measured using 7'-dichlorofluorescin diacetate (DCFH-DA) as a fluorescent probe in flow cytometry. The caspase 3 activity was assessed using a colorimetric assay Kit. RESULTS: Echinacea purpurea (EP) root extract induced a considerable decrease in A549 viable cells, showing a time and dose-dependent response. The cell toxicity of EP was accompanied by induction of early apoptosis and cell accumulation at the sub G1 phase of the cell cycle. The elevation of cellular ROS level and caspase 3 activity indicate ROS-induced caspase-dependent apoptosis following the treatment of A549 cells by EP extract. The observed effects of EP extract on A549 growth and death were abrogated following blockage of CB2 using AM630, a specific antagonist of the CB2 receptor. Increasing concentrations of Cannabis sativa (CS) induced A549 cell death in a time-dependent manner, followed by induction of early apoptosis, cell cycle arrest at sub G1 phase, elevation of ROS level, and activation of caspase 3. The CB2 blockage caused attenuation of CS effects on A549 cell death which revealed consistency with the effects of EP extract on A549 cells. CONCLUSIONS: The pro-apoptotic effects of EP and CS extracts on A549 cells and their possible regulatory role of CB2 activity might be attributed to metabolites of both herbs. These effects deserve receiving more attention as alternative anti-cancer agents.
Assuntos
Apoptose/efeitos dos fármacos , Cannabis/química , Caspase 3/metabolismo , Echinacea/química , Extratos Vegetais/farmacologia , Células A549 , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Sclareol is an organic compound with potential anti-tumor effects against various cancer types. However, its precise molecular mechanism in the suppression of tumor growth has not been fully elucidated. In the present study, the anti-proliferative and apoptosis-inducing effects of sclareol with cyclophosphamide were investigated in breast cancer cells and the involvement of the JAK/STAT pathway was evaluated. For this purpose, MCF-7 breast cancer cells were cultured and treated with various concentrations of sclareol to determine its IC50. Cell viability was measured by MTT assay and apoptosis was assessed by flow cytometric analysis of annexin V binding. Gene and protein expression were examined by real-time PCR and Western blotting, respectively. The activity of caspase enzymes was also measured. The results showed that sclareol significantly reduced cell viability and triggered cell death and its co-administration with cyclophosphamide enhanced its anti-cancer properties. Additionally, sclareol up-regulated the expression of p53 and BAX and reduced the expression of Bcl-2. Docking studies indicated an interaction between sclareol and STAT3 which was proved by attenuation of STAT3 phosphorylation after treatment of the cells with sclareol. Sclareol was also capable of suppressing the function of IL-6 in modulating the expression of apoptosis-associated genes. Altogether these data suggest the potential of sclareol as an anti-cancer agent and demonstrate that a combination of sclareol with cyclophosphamide might serve as an effective chemotherapeutic approach resulting in improvements in the treatment of breast cancer.
RESUMO
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded, tiny RNAs with 21-23 nucleotides that regulate several biological functions through binding to target mRNAs and modulating gene expression at post-transcriptional levels. Recent studies have described crucial roles for miRNAs in pathophysiology of numerous human cancers. They can act as an oncogene and promote cancer or as a tumor suppressor and alleviate the disease. Recently discovered microRNA-154 (miR-154) has been proposed to be involved in multiple physiological and pathological processes including cancer. With this aspect, aberrant expression of miR-154 has been demonstrated in variety of human malignancies, suggesting an important role for miR-154 in tumorigenesis. To be specific, it is considered as a tumor suppressor miRNA and exerts its beneficial effects by targeting several genes. This review systematically summarizes the recent advances done on the role of miR-154 in different cancers and discusses its potential prognostic, diagnostic and therapeutic values.
RESUMO
BACKGROUND: Breast cancer is the most common kind of cancer among women in the world. Despite major cancer therapy successes in recent years, cancer cells usually develop mechanisms to survive chemotherapy- induced cell death. Therefore, new strategies are needed to reverse cancer chemoresistance. OBJECTIVE: The aim of this study was to investigate the effect of a recently-synthesized ferrocene derivative named 1-ferrocenyl-3-(4-methylsulfonylphenyl)propen-1-one (FMSP) on cisplatin resistance in MCF-7 cells, focusing on its inhibitory effects on Multi-Drug Resistance-1 (MDR-1) and inflammatory-related STAT3 pathway. METHODS: Cisplatin-resistant MCF-7 cells were developed and the effect of cisplatin and FMSP on cell viability was examined by MTT assay. RT-PCR and Western blotting analyses were performed to assess the gene and protein expression of MDR-1 as well as phosphorylation of JAK2 and STAT3. RESULTS: Overexpression of MDR1 as well as a marked increase in the level of phosphorylated STAT3 was observed in cisplatin-resistant MCF-7 (MCF-7R) cells. FMSP successfully reduced the MCF-7R cell viability and reversed both MDR1 expression and STAT3 phosphorylation status through which sensitivity of MCF-7R cells to cisplatin treatment was regained. CONCLUSION: Our results indicated that FMSP may be considered as a promising therapeutic agent for the prevention and management of chemoresistance in breast cancer cells.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Ferrosos/farmacologia , Janus Quinase 2/antagonistas & inibidores , Metalocenos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Ferrosos/síntese química , Compostos Ferrosos/química , Humanos , Janus Quinase 2/metabolismo , Metalocenos/síntese química , Metalocenos/química , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Pituitary adenomas as multifactorial intracranial neoplasms impose a massive burden of morbidity on patients and characterizing the molecular mechanism underlying their pathogenesis has received considerable attention. Despite the appealing role of cyclooxygenase enzymes and their bioactive lipid products in cancer pathogenesis, their relevance to pituitary adenoma pathogenesis is debated and yet to be determined. Thus, the current study perused this relevance. METHODS: The expression level of the isoforms of cyclooxygenase (COX-1 and COX-2) was evaluated in hormone-secreting and in-active pituitary adenoma tumors and normal pituitary tissues through Real-Time PCR. The level of PGE2, as the main product of enzymes, was assessed using enzyme immunoassay kits in patients and healthy subjects. RESULTS: The results of the current study demonstrated that COX-1 and COX-2 expression levels were increased in pituitary tumors including non-functional pituitary adenoma (NFPA), acromegaly, Cushing's disease and prolactinoma compared with normal pituitary tissues. A significant expression level of COX-2 was observed in NFPA compared with the other pituitary tumors. Furthermore, the COX-2 expression level was significantly increased in macroadenoma and invasive tumors. The level of PGE2 was consistent with COX enzymes enhanced in pituitary adenoma tumors compared with healthy pituitary tissue. A significant elevation in the PGE2 level was detected in NFPA compared with hormone-secreting pituitary tumors. Additionally, the PGE2 level was increased in macroadenoma compared with microadenoma and in invasive compared with non-invasive pituitary tumors. The diagnostic values of cyclooxygenase isoforms and PGE2 were considerable between patients and healthy groups; however, COX-2 revealed more value in distinguishing endocrinologically active and non-active pituitary tumors. CONCLUSIONS: Data from the current study provides expression patterns of COX-1, COX-2 and PGE2 in prevalent pituitary tumors and their association with patients' clinical features which may open up new molecular targets for early diagnosis/follow up of pituitary tumor growth.
Assuntos
Adenoma/diagnóstico , Biomarcadores/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Neoplasias Hipofisárias/diagnóstico , Adenoma/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/metabolismo , Prognóstico , Adulto JovemRESUMO
BACKGROUND: Breast Cancer Stem Cells (BCSCs) possess the ability of self-renewal and cellular heterogeneity, and therefore, play a key role in the initiation, propagation and clinical outcome of breast cancer. It has been shown that ferrocene complexes have remarkable potential as anticancer drugs. OBJECTIVE: The present study was conducted to investigate the effects of a novel ferrocene complex, 1- ferrocenyl-3-(4-methylsulfonylphenyl)propen-1-one (FMSP) on MCF-7 breast cancer cell line and its derived mammospheres with cancer stem cell properties. METHODS: Mammospheres were developed from MCF-7 cells and validated by the evaluation of CD44 and CD24 cell surface markers by flow cytometry as well as of the expression of genes that are associated with stem cell properties by real-time PCR. Cells viability was assessed by a soluble tetrazolium salt (MTS) after the treatment of cells with various concentrations of FMSP. Apoptosis was evaluated by flow cytometry analysis of annexin V and PI labeling of cells. Reactive Oxygen Species (ROS) production was measured using a cellpermeable, oxidant-sensitive fluorescence probe (carboxy-H2DCFDA). The involvement of the JAK2/STAT3 pathway was also investigated by western blotting. RESULTS: FMSP could successfully prevent mammosphere formation from differentiated MCF-7 cells and significantly down-regulated the expression of genes involved in the production of the stem cell properties including Wnt1, Notch1, ß -catenin, SOX2, CXCR4 and ALDH1A1. FMSP decreased cell viability in both MCF-7 cells and spheroid cells, although MCF-10A cells were unaffected by this compound. Apoptosis was also dramatically induced by FMSP, via ROS production but independent of CD95 activation. Phosphorylation levels of JAK2 and STAT3 were also found to be significantly attenuated even in the presence of IL-6, the putative activator of the JAK/STAT pathway. CONCLUSION: FMSP can effectively target BCSCs via ROS production and modulation of major signaling pathways that contribute to the stemness of breast cancer cells, and therefore, might be considered a promising anticancer agent after in vivo studies.