Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 190(2): 1400-1417, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35876558

RESUMO

Intensive research on nitrogen-fixing symbiosis in two model legumes has uncovered the molecular mechanisms, whereby rhizobial Nod factors activate a plant symbiotic signaling pathway that controls infection and nodule organogenesis. In contrast, the so-called Nod-independent symbiosis found between Aeschynomene evenia and photosynthetic bradyrhizobia, which does not involve Nod factor recognition nor infection thread formation, is less well known. To gain knowledge on how Nod-independent symbiosis is established, we conducted a phenotypic and molecular characterization of A. evenia lines carrying mutations in different nodulation genes. Besides investigating the effect of the mutations on rhizobial symbiosis, we examined their consequences on mycorrhizal symbiosis and in nonsymbiotic conditions. Analyzing allelic mutant series for AePOLLUX, Ca2+/calmodulin dependent kinase, AeCYCLOPS, nodulation signaling pathway 2 (AeNSP2), and nodule inception demonstrated that these genes intervene at several stages of intercellular infection and during bacterial accommodation. We provide evidence that AeNSP2 has an additional nitrogen-dependent regulatory function in the formation of axillary root hairs at lateral root bases, which are rhizobia-colonized infection sites. Our investigation of the recently discovered symbiotic actor cysteine-rich receptor-like kinase specified that it is not involved in mycorrhization; however, it is essential for both symbiotic signaling and early infection during nodulation. These findings provide important insights on the modus operandi of Nod-independent symbiosis and contribute to the general understanding of how rhizobial-legume symbioses are established by complementing the information acquired in model legumes.


Assuntos
Fabaceae , Rhizobium , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Calmodulina/metabolismo , Cisteína/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Nodulação/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética
2.
Mol Plant Microbe Interact ; 29(6): 447-57, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26959836

RESUMO

In response to the presence of compatible rhizobium bacteria, legumes form symbiotic organs called nodules on their roots. These nodules house nitrogen-fixing bacteroids that are a differentiated form of the rhizobium bacteria. In some legumes, the bacteroid differentiation comprises a dramatic cell enlargement, polyploidization, and other morphological changes. Here, we demonstrate that a peptidoglycan-modifying enzyme in Bradyrhizobium strains, a DD-carboxypeptidase that contains a peptidoglycan-binding SPOR domain, is essential for normal bacteroid differentiation in Aeschynomene species. The corresponding mutants formed bacteroids that are malformed and hypertrophied. However, in soybean, a plant that does not induce morphological differentiation of its symbiont, the mutation does not affect the bacteroids. Remarkably, the mutation also leads to necrosis in a large fraction of the Aeschynomene nodules, indicating that a normally formed peptidoglycan layer is essential for avoiding the induction of plant immune responses by the invading bacteria. In addition to exopolysaccharides, capsular polysaccharides, and lipopolysaccharides, whose role during symbiosis is well defined, our work demonstrates an essential role in symbiosis for yet another rhizobial envelope component, the peptidoglycan layer.


Assuntos
Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Peptidoglicano/metabolismo , Simbiose/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Mutação , Fotossíntese
3.
Proc Natl Acad Sci U S A ; 108(19): 7775-80, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518907

RESUMO

Protein translocation in Escherichia coli is mediated by the translocase that in its minimal form consists of the protein-conducting channel SecYEG, and the motor protein, SecA. SecYEG forms a narrow pore in the membrane that allows passage of unfolded proteins only. Molecular dynamics simulations suggest that the maximal width of the central pore of SecYEG is limited to . To access the functional size of the SecYEG pore, the precursor of outer membrane protein A was modified with rigid spherical tetraarylmethane derivatives of different diameters at a unique cysteine residue. SecYEG allowed the unrestricted passage of the precursor of outer membrane protein A conjugates carrying tetraarylmethanes with diameters up to , whereas a sized molecule blocked the translocation pore. Translocation of the protein-organic molecule hybrids was strictly proton motive force-dependent and occurred at a single pore. With an average diameter of an unfolded polypeptide chain of , the pore accommodates structures of at least , which is vastly larger than the predicted maximal width of a single pore by molecular dynamics simulations.


Assuntos
Proteínas de Escherichia coli/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Transporte Proteico , Força Próton-Motriz , Canais de Translocação SEC , Proteínas SecA
4.
Biochim Biophys Acta ; 1808(3): 851-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20801097

RESUMO

The vast majority of proteins trafficking across or into the bacterial cytoplasmic membrane occur via the translocon. The translocon consists of the SecYEG complex that forms an evolutionarily conserved heterotrimeric protein-conducting membrane channel that functions in conjunction with a variety of ancillary proteins. For posttranslational protein translocation, the translocon interacts with the cytosolic motor protein SecA that drives the ATP-dependent stepwise translocation of unfolded polypeptides across the membrane. For the cotranslational integration of membrane proteins, the translocon interacts with ribosome-nascent chain complexes and membrane insertion is coupled to polypeptide chain elongation at the ribosome. These processes are assisted by the YidC and SecDF(yajC) complex that transiently interacts with the translocon. This review summarizes our current understanding of the structure-function relationship of the translocon and its interactions with ancillary components during protein translocation and membrane protein insertion. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
5.
Biochemistry ; 49(11): 2380-8, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20146530

RESUMO

The molecular chaperone SecB binds to hydrophobic sections of unfolded secretory proteins and thereby prevents their premature folding prior to secretion by the translocase of Escherichia coli. Here, we have investigated the effect of the single-residue mutation of leucine 42 to arginine (L42R) centrally positioned in the polypeptide binding pocket of SecB on its chaperonin function. The mutant retains its tetrameric structure and SecA targeting function but is defective in its holdase activity. Isothermal titration calorimetry and single-molecule optical tweezer studies suggest that the SecB(L42R) mutant exhibits a reduced polypeptide binding affinity allowing for partial folding of the bound polypeptide chain rendering it translocation-incompetent.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ligantes de Maltose , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Mutação , Peptídeos/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Precursores de Proteínas/metabolismo , Estrutura Quaternária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
6.
J Biol Chem ; 284(23): 15805-14, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19366685

RESUMO

The SecYEG translocon of Escherichia coli mediates the translocation of preproteins across the cytoplasmic membrane. Here, we have examined the role of the proposed lateral gate of the translocon in translocation. A dual cysteine cross-linking approach allowed the introduction of cross-linker arms of various lengths between adjoining aminoacyl positions of transmembrane segments 2b and 7 of the lateral gate. Oxidation and short spacer linkers that fix the gate in the closed state abolished preprotein translocation, whereas long spacer linkers support translocation. The cross-linking data further suggests that SecYEG lateral gate opening and activation of the SecA ATPase are coupled processes. It is concluded that lateral gate opening is a critical step during SecA-dependent protein translocation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Citoplasma/metabolismo , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Euryarchaeota/genética , Euryarchaeota/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/metabolismo , Porinas/metabolismo , Conformação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Transporte Proteico/genética , Canais de Translocação SEC
7.
J Mol Biol ; 386(4): 1000-10, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19244616

RESUMO

Sec translocase catalyzes membrane protein insertion and translocation. We have introduced stretches of charged amino acid residues into the preprotein proOmpA and have analyzed their effect on in vitro protein translocation into Escherichia coli inner membrane vesicles. Both negatively and positively charged amino acid residues inhibit translocation of proOmpA, yielding a partially translocated polypeptide chain that blocks the translocation site and no longer activates preprotein-stimulated SecA ATPase activity. Stretches of positively charged residues are much stronger translocation inhibitors and suppressors of the preprotein-stimulated SecA ATPase activity than negatively charged residues. These results indicate that both clusters of positively and negatively charged amino acids are poor substrates for the Sec translocase and that this is reflected by their inability to stimulate the ATPase activity of SecA.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Ativação Enzimática , Proteínas Mutantes/metabolismo , Precursores de Proteínas/metabolismo , Transporte Proteico , Força Próton-Motriz , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
8.
J Biol Chem ; 283(46): 31269-73, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18658156

RESUMO

The YidC protein fulfills a dual and essential role in the assembly of inner membrane proteins in Escherichia coli. Besides interacting with transmembrane segments of newly synthesized membrane proteins that insert into the membrane via the SecYEG complex, YidC also functions as an independent membrane protein insertase and assists in membrane protein folding. Here, we discuss the mechanisms of YidC substrate recognition and membrane insertion with emphasis on its role in the assembly of multimeric membrane protein complexes such as the F1F0-ATP synthase.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/biossíntese
9.
J Mol Biol ; 377(1): 83-90, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18241889

RESUMO

Protein translocation in Escherichia coli is mediated by the translocase that, in its minimal form, comprises a protein-conducting pore (SecYEG) and a motor protein (SecA). The SecYEG complex forms a narrow channel in the membrane that allows passage of secretory proteins (preproteins) in an unfolded state only. It has been suggested that the SecA requirement for translocation depends on the folding stability of the mature preprotein domain. Here we studied the effects of the signal sequence and SecB on the folding and translocation of folding stabilizing and destabilizing mutants of the mature maltose binding protein (MBP). Although the mutations affect the folding of the precursor form of MBP, these are drastically overruled by the combined unfolding stabilization of the signal sequence and SecB. Consequently, the translocation kinetics, the energetics and the SecA and SecB dependence of the folding mutants are indistinguishable from those of wild-type preMBP. These data indicate that unfolding of the mature domain of preMBP is likely not a rate-determining step in translocation when the protein is targeted to the translocase via SecB.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas Periplásmicas de Ligação/química , Proteínas Periplásmicas de Ligação/metabolismo , Dobramento de Proteína , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Endopeptidase K/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Cinética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese , Proteínas Mutantes/isolamento & purificação , Proteínas Periplásmicas de Ligação/isolamento & purificação , Precursores de Proteínas/química , Precursores de Proteínas/isolamento & purificação , Precursores de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Espectrometria de Fluorescência , Termodinâmica , Triptofano
10.
Annu Rev Biochem ; 77: 643-67, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18078384

RESUMO

About 25% to 30% of the bacterial proteins function in the cell envelope or outside of the cell. These proteins are synthesized in the cytosol, and the vast majority is recognized as a ribosome-bound nascent chain by the signal recognition particle (SRP) or by the secretion-dedicated chaperone SecB. Subsequently, they are targeted to the Sec translocase in the cytoplasmic membrane, a multimeric membrane protein complex composed of a highly conserved protein-conducting channel, SecYEG, and a peripherally bound ribosome or ATP-dependent motor protein SecA. The Sec translocase mediates the translocation of proteins across the membrane and the insertion of membrane proteins into the cytoplasmic membrane. Translocation requires the energy sources of ATP and the proton motive force (PMF) while the membrane protein insertion is coupled to polypeptide chain elongation at the ribosome. This review summarizes the present knowledge of the mechanism and structure of the Sec translocase, with a special emphasis on unresolved questions and topics of current research.


Assuntos
Adenosina Trifosfatases/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Transporte Proteico , Escherichia coli/metabolismo , Modelos Biológicos , Chaperonas Moleculares/química , Conformação Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Força Próton-Motriz , Prótons , Canais de Translocação SEC , Proteínas SecA
11.
Science ; 318(5855): 1458-61, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18048690

RESUMO

How chaperone interactions affect protein folding pathways is a central problem in biology. With the use of optical tweezers and all-atom molecular dynamics simulations, we studied the effect of chaperone SecB on the folding and unfolding pathways of maltose binding protein (MBP) at the single-molecule level. In the absence of SecB, we find that the MBP polypeptide first collapses into a molten globulelike compacted state and then folds into a stable core structure onto which several alpha helices are finally wrapped. Interactions with SecB completely prevent stable tertiary contacts in the core structure but have no detectable effect on the folding of the external alpha helices. It appears that SecB only binds to the extended or molten globulelike structure and retains MBP in this latter state. Thus during MBP translocation, no energy is required to disrupt stable tertiary interactions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas Periplásmicas de Ligação/química , Dobramento de Proteína , Simulação por Computador , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Pinças Ópticas , Proteínas Periplásmicas de Ligação/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
J Mol Biol ; 372(2): 422-33, 2007 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-17669421

RESUMO

It is generally assumed that preprotein substrates must be presented in an unfolded state to the bacterial Sec-translocase in order to be translocated. Here, we have examined the ability of the Sec-translocase to translocate folded preproteins. Tightly folded human cardiac Ig-like domain I27 fused to the C terminus of proOmpA is translocated efficiently by the Sec-translocase and the translocation kinetics are determined by the extent of folding of the titin I27 domain. Accumulation of specific translocation intermediates around the fusion point that undergo translocation progress upon ATP binding suggests that the motor protein SecA plays an important and decisive role in promoting unfolding of the titin I27 domain. It is concluded that the bacterial Sec-translocase is capable of actively unfolding preproteins.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Dobramento de Proteína , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Conectina , Humanos , Imunoglobulinas/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Desnaturação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Ureia/farmacologia
13.
FEBS Lett ; 581(15): 2820-8, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-17466297

RESUMO

Protein translocation across the cellular membranes is an ubiquitous and crucial activity of cells. This process is mediated by translocases that consist of a protein conducting channel and an associated motor protein. Motor proteins interact with protein substrates and utilize the free energy of ATP binding and hydrolysis for protein unfolding, translocation and unbinding. Since motor proteins are found either at the cis- or trans-side of the membrane, different mechanisms for translocation have been proposed. In the Power stroke model, cis-acting motors are thought to push, while trans-motors pull on the substrate protein during translocation. In the Brownian ratchet model, translocation occurs by diffusion of the unfolded polypeptide through the translocation pore while directionality is achieved by trapping and refolding. Recent insights in the structure and function of the molecular motors suggest that different mechanisms can be employed simultaneously.


Assuntos
Proteínas Motores Moleculares/metabolismo , Transporte Proteico/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Motores Moleculares/química , Dobramento de Proteína , Canais de Translocação SEC , Proteínas SecA
14.
J Mol Biol ; 361(5): 839-49, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16890955

RESUMO

The motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG. Mutagenesis of either the conserved Arg357 in C5 or Glu176 in TMS4 interferes with the catalytic activity of SecA but not with binding of SecA to SecYEG. Our data explain how conformational changes in SecA could be directly coupled to the previously proposed opening mechanism of the SecYEG channel.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Arginina/metabolismo , Proteínas de Bactérias/química , Sítios de Ligação , Cisteína/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/química , Glutamina/metabolismo , Cinética , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Mutagênese , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
15.
J Biol Chem ; 281(23): 15709-13, 2006 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16601117

RESUMO

In Escherichia coli, secretory proteins (preproteins) are translocated across the cytoplasmic membrane by the Sec system composed of a protein-conducting channel, SecYEG, and an ATP-dependent motor protein, SecA. After binding of the preprotein to SecYEG-bound SecA, cycles of ATP binding and hydrolysis by SecA are thought to drive the stepwise translocation of the preprotein across the membrane. To address how the length of a preprotein substrate affects the SecA-driven translocation process, we constructed derivatives of the precursor of the outer membrane protein A (proOmpA) with 2, 4, 6, and 8 in-tandem repeats of the periplasmic domain. With increasing polypeptide length, an increasing delay in the time before full-length translocation was observed, but the translocation rate expressed as amino acid translocation per minute remained constant. These data indicate that in the ATP-dependent reaction, SecA drives a constant rate of preprotein translocation consistent with a stepping mechanism of translocation.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Bactérias/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Trifosfato de Adenosina/metabolismo , Hidrólise , Cinética , Precursores de Proteínas/metabolismo , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
16.
J Biol Chem ; 281(18): 12248-52, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16513637

RESUMO

The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that facilitate the insertion of membrane proteins. Depletion of YidC in E. coli leads to a specific defect in the functional assembly of major energy transducing complexes such as the F1F0 ATPase and cytochrome bo3 oxidase. Here we report on the in vitro reconstitution of the membrane insertion of the CyoA subunit of cytochrome bo3 oxidase. Efficient insertion of in vitro synthesized pre-CyoA into proteoliposomes requires YidC, SecYEG, and SecA and occurs independently of the proton motive force. These data demonstrate that pre-CyoA is a substrate of a novel pathway that involves both SecYEG and YidC.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Escherichia coli/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Membrana Celular/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Heme/química , Lipossomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Mutação , Ligação Proteica , ATPases Translocadoras de Prótons/metabolismo , Canais de Translocação SEC
17.
J Biol Chem ; 280(42): 35255-60, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16115882

RESUMO

The ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines. The cross-linked SecA dimer interacts with the SecYEG complex with a similar stoichiometry as non-cross-linked SecA. Cross-linking reversibly disrupts the SecB binding site on SecA. However, in the absence of SecB, the activity of the disulfide-bonded SecA dimer is indistinguishable from wild-type SecA. Moreover, SecYEG binding stabilizes a cold sodium dodecylsulfate-resistant dimeric state of SecA. The results demonstrate that dissociation of the SecA dimer is not an essential feature of the protein translocation reaction.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Citoplasma/metabolismo , Dimerização , Dissulfetos/química , Relação Dose-Resposta a Droga , Cinética , Mutação , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Dodecilsulfato de Sódio/química , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Ureia/farmacologia
18.
J Cell Biol ; 165(2): 213-22, 2004 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15096523

RESUMO

The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now demonstrate that the insertion of in vitro-synthesized F1F0 ATP synthase subunit c (F0c) into inner membrane vesicles requires YidC. Insertion is independent of the proton motive force, and proteoliposomes containing only YidC catalyze the membrane insertion of F0c in its native transmembrane topology whereupon it assembles into large oligomers. Co-reconstituted SecYEG has no significant effect on the insertion efficiency. Remarkably, signal recognition particle and its membrane-bound receptor FtsY are not required for the membrane insertion of F0c. In conclusion, a novel membrane protein insertion pathway in E. coli is described in which YidC plays an exclusive role.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Subunidades Proteicas/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Substâncias Macromoleculares , Potenciais da Membrana , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Moleculares , Estrutura Secundária de Proteína , Prótons , Canais de Translocação SEC , Proteínas SecA , Partícula de Reconhecimento de Sinal/metabolismo , Vesículas Transportadoras/química , Vesículas Transportadoras/metabolismo
19.
J Biol Chem ; 279(3): 1659-64, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14578344

RESUMO

In Escherichia coli, the insertion of most inner membrane proteins is mediated by the Sec translocase. Ribosome-bound nascent chains of Sec-dependent inner membrane proteins are targeted to the SecYEG complex via the signal recognition particle pathway. We now demonstrate that the signal recognition particle-dependent co-translational membrane targeting and membrane insertion of FtsQ can be reconstituted with proteoliposomes containing purified SecYEG. SecA and a transmembrane electrical potential are essential for the translocation of the large periplasmic domain of FtsQ, whereas co-reconstituted YidC has an inhibitory effect. These data demonstrate that membrane protein insertion can be reconstituted with a minimal set of purified Sec components.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/metabolismo , Proteolipídeos/fisiologia , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Força Próton-Motriz , Canais de Translocação SEC , Proteínas SecA
20.
J Biol Chem ; 278(26): 23295-300, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12707259

RESUMO

Conditional lethal YidC mutants have been isolated to decipher the role of YidC in the assembly of Sec-dependent and Sec-independent membrane proteins. We now show that the membrane insertion of the Sec-independent M13 procoat-lep protein is inhibited in a short time in a temperature-sensitive mutant when shifted to the nonpermissive temperature. This provides an additional line of evidence that YidC plays a direct role in the insertion of the Sec-independent M13 procoat protein. However, in the temperature-sensitive mutant, the insertion of the Sec-independent Pf3 phage coat protein and the Sec-dependent leader peptidase were not strongly inhibited at the restricted temperatures. Conversely, using a cold-sensitive YidC strain, we find that the membrane insertion of the Sec-independent Pf3 coat protein is blocked, and the Sec-dependent leader peptidase is inhibited at the nonpermissive temperature, whereas the insertion of the M13 procoat protein is nearly normal. These data show that the YidC function for procoat and its function for Pf3 coat and possibly leader peptidase are genetically separable and suggest that the YidC structural requirements are different for the Sec-independent M13 procoat and Pf3 coat phage proteins that insert by different mechanisms.


Assuntos
Proteínas de Bactérias , Proteínas do Capsídeo , Capsídeo/metabolismo , Proteínas de Escherichia coli/fisiologia , Escherichia coli/virologia , Genes Letais/fisiologia , Proteínas de Membrana , Proteínas de Membrana Transportadoras/fisiologia , Precursores de Proteínas/metabolismo , Adenosina Trifosfatases/fisiologia , Bacteriófago M13/química , Bacteriófago M13/fisiologia , Capsídeo/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Precursores de Proteínas/fisiologia , Sinais Direcionadores de Proteínas , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Serina Endopeptidases , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA