Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39065708

RESUMO

Here we have shown for the first time altered expression of the vascular smooth muscle (VSM) KATP channel subunits in segments of the human internal mammary artery (HIMA) in patients with type-2 diabetes mellitus (T2DM). Functional properties of vascular KATP channels in the presence of T2DM, and the interaction between its subunits and endogenous ligands known to relax this vessel, were tested using the potassium (K) channels opener, pinacidil. HIMA is the most commonly used vascular graft in cardiac surgery. Previously it was shown that pinacidil relaxes HIMA segments through interaction with KATP (SUR2B/Kir6.1) vascular channels, but it is unknown whether pinacidil sensitivity is changed in the presence of T2DM, considering diabetes-induced vascular complications commonly seen in patients undergoing coronary artery bypass graft surgery (CABG). KATP subunits were detected in HIMA segments using Western blot and immunohistochemistry analyses. An organ bath system was used to interrogate endothelium-independent vasorelaxation caused by pinacidil. In pharmacological experiments, pinacidil was able to relax HIMA from patients with T2DM, with sensitivity comparable to our previous results. All three KATP subunits (SUR2B, Kir6.1 and Kir6.2) were observed in HIMA from patients with and without T2DM. There were no differences in the expression of the SUR2B subunit. The expression of the Kir6.1 subunit was lower in HIMA from T2DM patients. In the same group, the expression of the Kir6.2 subunit was higher. Therefore, KATP channels might not be the only method of pinacidil-induced dilatation of T2DM HIMA. T2DM may decrease the level of Kir6.1, a dominant subunit in VSM of HIMA, altering the interaction between pinacidil and those channels.

2.
Chin Med ; 18(1): 163, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38098026

RESUMO

Gossypol, a polyphenolic aldehyde derived from cottonseed plants, has seen a transformation in its pharmaceutical application from a male contraceptive to a candidate for cancer therapy. This shift is supported by its recognized antitumor properties, which have prompted its investigation in the treatment of various cancers and related inflammatory conditions. This review synthesizes the current understanding of gossypol as an anticancer agent, focusing on its pharmacological mechanisms, strategies to enhance its clinical efficacy, and the status of ongoing clinical evaluations.The methodological approach to this review involved a systematic search across several scientific databases including the National Center for Biotechnology Information (NCBI), PubMed/MedLine, Google Scholar, Scopus, and TRIP. Studies were meticulously chosen to cover various aspects of gossypol, from its chemical structure and natural sources to its pharmacokinetics and confirmed anticancer efficacy. Specific MeSH terms and keywords related to gossypol's antineoplastic applications guided the search strategy.Results from selected pharmacological studies indicate that gossypol inhibits the Bcl-2 family of anti-apoptotic proteins, promoting apoptosis in tumor cells. Clinical trials, particularly phase I and II, reveal gossypol's promise as an anticancer agent, demonstrating efficacy and manageable toxicity profiles. The review identifies the development of gossypol derivatives and novel carriers as avenues to enhance therapeutic outcomes and mitigate adverse effects.Conclusively, gossypol represents a promising anticancer agent with considerable therapeutic potential. However, further research is needed to refine gossypol-based therapies, explore combination treatments, and verify their effectiveness across cancer types. The ongoing clinical trials continue to support its potential, suggesting a future where gossypol could play a significant role in cancer treatment protocols.

3.
Front Pharmacol ; 14: 1160616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138852

RESUMO

Calotropin is a pharmacologically active compound isolated from milkweed plants like Calotropis procera, Calotropis gigantea, and Asclepias currasavica that belong to the Asclepiadaceae family. All of these plants are recognised as medical traditional plants used in Asian countries. Calotropin is identified as a highly potent cardenolide that has a similar chemical structure to cardiac glycosides (such as digoxin and digitoxin). During the last few years, cytotoxic and antitumor effects of cardenolides glycosides have been reported more frequently. Among cardenolides, calotropin is identified as the most promising agent. In this updated and comprehensive review, we aimed to analyze and discuss the specific mechanisms and molecular targets of calotropin in cancer treatment to open new perspectives for the adjuvant treatment of different types of cancer. The effects of calotropin on cancer have been extensively studied in preclinical pharmacological studies in vitro using cancer cell lines and in vivo in experimental animal models that have targeted antitumor mechanisms and anticancer signaling pathways. The analyzed information from the specialized literature was obtained from scientific databases until December 2022, mainly from PubMed/MedLine, Google Scholar, Scopus, Web of Science, and Science Direct databases using specific MeSH search terms. The results of our analysis demonstrate that calotropin can be a potential chemotherapeutic/chemopreventive adjunctive agent in cancer pharmacotherapeutic management.

4.
Life (Basel) ; 12(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35207581

RESUMO

Resveratrol (RSV), a plant-derived polyphenol, demonstrates broad-spectrum health benefits, including anti-proliferative, anti-inflammatory, antidiabetic, anti-ischemic and antioxidant effects. The aim of this review is to give an important heads-up regarding the influence of RSV as a phytoestrogen, RSV effects on most common pregnancy-related complications, as well as its impact on the embryogenesis, spermatogenesis, and women's reproductive health. Considering the important implications of RSV on human reproductive health, this overview could provide a groundwork, encouraging more detailed research at the clinical level.

5.
Cell Mol Biol (Noisy-le-grand) ; 66(4): 133-144, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32583792

RESUMO

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a phytoalexin present in a variety of plant species. Resveratrol has a wide spectrum of pharmacologic properties, and it exhibits versatile biological effects on different human and animal models. The studies have shown that potassium (K) channels can be potential targets in the mechanism of resveratrol action. K channels play a crucial role in maintaining membrane potential. Inhibition of K channels causes membrane depolarization and then contraction of smooth muscles, while the activation leads to membrane hyperpolarization and subsequently, relaxation. Five diverse types of K channels have been identified in smooth muscle cells in different tissue: ATP-sensitive K channels (KATP), voltage-dependent K channels (Kv), Ca2+ - and voltage-dependent K channels (BKCa), inward rectifier K channels (Kir), and tandem two-pore K channels (K2P). The expression and activity of K channels altered in many types of diseases. Aberrant function or expression of K channels can be underlying in pathologies such as cardiac arrhythmia, diabetes mellitus, hypertension, preterm birth, preeclampsia, and various types of cancer. Modulation of K channel activity by molecular approaches and selective drug development may be a novel treatment modality for these dysfunctions in the future. The plant-derived non-toxic polyphenols, such as resveratrol, can alter K channel activity and lead to the desired outcome. This review presents the basic properties, physiological, pathophysiological functions of K channels, and pharmacological roles of resveratrol on the major types of K channels that have been determined in smooth muscle cells.


Assuntos
Terapia de Alvo Molecular , Músculo Liso/metabolismo , Canais de Potássio/metabolismo , Resveratrol/farmacologia , Animais , Humanos , Músculo Liso/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Resveratrol/química , Vasodilatação/efeitos dos fármacos
6.
Arch Environ Occup Health ; 75(7): 406-414, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32200732

RESUMO

Climate change is considered to have great impact on human health. The heat waves have been associated with excess morbidity and mortality of cardiovascular diseases (CVD) across various populations and geographic locations. Important role in the heat-induced cardiovascular damage has endothelial dysfunction. It has been noticed that hot weather can impair tone and structure of the blood vessels via interfering with variety of biological factors such as nitric oxide synthesize, cytokine production and systemic inflammation. Also, due to dehydration and increased blood viscosity, by promoting thrombogenesis, heat has important impact on patients with atherosclerosis. During chronic exposure to the cold or hot weather cardiovascular function can be decreased, leading to a higher risk of developing heart attack, malignant cardiac arrhythmias, thromboembolic diseases and heat-induced sepsis like shock. It has been shown that changes in the ambient temperature through increasing blood pressure, blood viscosity, and heart rate, contribute to the cardiovascular mortality. The majority of deaths due to heat waves especially affect individuals with preexisting chronic CVD. This population can experience a decline in the health status, since extreme ambient temperature affects pharmacokinetic parameters of many cardiovascular drugs. Increased mortality from ischemic or hemorrhagic stroke can also be related to extreme temperature variations. On a cellular level, higher ambient temperature can limit storage of ATP and O2 increase amount of free radicals and toxic substances and induce neuronal apoptotic signal transduction, which all can lead to a stroke. Preserving cardiovascular function in context of extreme climate changing tends to be particularly challenging.


Assuntos
Sistema Cardiovascular/fisiopatologia , Mudança Climática , Humanos
7.
Exp Mol Pathol ; 111: 104323, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669131

RESUMO

Gestational diabetes mellitus (GDM) and pregnancy-induced hypertension (PIH) can jeopardize mother and/or fetus. Vascular ATP-sensitive potassium (KATP) channels most likely participate in the processes of diabetes and hypertension. The aim of this research was to examine whether GDM and PIH cause changes in the expression and function of KATP channels in vascular smooth muscle of human umbilical vein (HUV). Western blot and immunohistochemistry detected significantly decreased expression of Kir6.1 subunit of KATP channels in GDM and PIH, while the expression of SUR2B was unchanged. In GDM, a K+ channel opener, pinacidil caused reduced relaxation of the endothelium-denuded HUVs compared to normal pregnancy. However, its effects in HUVs from PIH subjects were similar to normal pregnancy. In all groups KATP channel blocker glibenclamide antagonized the relaxation of HUV induced by pinacidil without change in the maximal relaxations indicating additional KATP channel-independent mechanisms of pinacidil action. Iberiotoxin, a selective antagonist of large-conductance calcium-activated potassium channels, inhibited the relaxant effect of pinacidil in PIH, but not in normal pregnancy and GDM. Experiments performed in K+-rich solution confirmed the existence of K+-independent effects of pinacidil, which also appear to be impaired in GDM and PIH. Thus, the expression of KATP channels is decreased in GDM and PIH. In GDM, vasorelaxant response of HUV to pinacidil is reduced, while in PIH it remains unchanged. It is very likely that KATP channels modulation and more detailed insight in KATP channel-independent actions of pinacidil may be precious in the therapy of pathological pregnancies.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Gestacional/fisiopatologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Canais KATP/metabolismo , Músculo Liso Vascular/metabolismo , Veias Umbilicais/metabolismo , Adulto , Feminino , Humanos , Músculo Liso Vascular/patologia , Gravidez , Veias Umbilicais/patologia
8.
Eur J Med Chem ; 63: 239-55, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23501110

RESUMO

Series of twelve chalcone and propafenone derivatives has been synthesized and evaluated for anticancer activities against HeLa, Fem-X, PC-3, MCF-7, LS174 and K562 cell lines. The 2D-QSAR and 3D-QSAR studies were performed for all compounds with cytotoxic activities against each cancer cell line. Partial least squares (PLS) regression has been applied for selection of the most relevant molecular descriptors and QSAR models building. Predictive potentials of the created 2D-QSAR and 3D-QSAR models for each cell line were compared, by use of leave-one-out cross-validation and external validation, and optimal QSAR models for each cancer cell line were selected. The QSAR studies have selected the most significant molecular descriptors and pharmacophores of the chalcone and propafenone derivatives and proposed structures of novel chalcone and propafenone derivatives with enhanced anticancer activity on the HeLa, Fem-X, PC-3, MCF-7, LS174 and K562 cells.


Assuntos
Antineoplásicos/síntese química , Propiofenonas/síntese química , Propiofenonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chalcona/síntese química , Chalcona/química , Chalcona/farmacologia , Células HeLa , Humanos , Concentração Inibidora 50 , Células K562 , Células MCF-7 , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Propafenona/síntese química , Propafenona/química , Propafenona/farmacologia , Propiofenonas/química , Relação Quantitativa Estrutura-Atividade
9.
Phytother Res ; 27(11): 1685-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23296904

RESUMO

We investigated the effects of resveratrol on rat portal vein (RPV) contractility without endothelium. Contractions were produced by electrical field stimulation of perivascular nerves (EFS), norepinephrine (NE), adenosine 5'-triphosphate (ATP), high K(+) solution and by calcium chloride (CaCl2 ) in Ca(2+) -free and high K(+) , Ca(2+) -free solution. The EFS-evoked contractions were more sensitive to resveratrol and to NS1619-selective openers of big calcium-sensitive (BKCa ) channels, than NE-evoked contractions. Effects of resveratrol on the ATP-evoked contractions were weak. Blockers of BKCa channels partly inhibited the effect of resveratrol only in EFS-contracted preparations. Western blotting showed that RPV expressed KCa 1.1 protein. Inhibitors of ATP- and voltage-sensitive K(+) channels did not modify the effects of resveratrol. None of the antagonists of K(+) channels affected the resveratrol inhibition of NE-evoked contractions and effect of high concentrations of resveratrol on the EFS-evoked contractions. Resveratrol more potently inhibited CaCl2 than potassium chloride contractions of RPV. Thus, BKCa channels partly mediate the inhibitory effect of resveratrol on the neurogenic contractions of RPV. The smooth muscle Ca(2+) channels and/or Ca(2+) mobilizing through cells might be involved in the effects of resveratrol on the contractility of RPV. Our results are important for better understanding the impact of resveratrol on the portal circulation.


Assuntos
Veia Porta/efeitos dos fármacos , Estilbenos/farmacologia , Vasoconstrição/efeitos dos fármacos , Vinho , Trifosfato de Adenosina/farmacologia , Animais , Cloreto de Cálcio/farmacologia , Estimulação Elétrica , Técnicas In Vitro , Masculino , Norepinefrina/farmacologia , Veia Porta/fisiologia , Potássio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Ratos , Ratos Wistar , Resveratrol
10.
Basic Clin Pharmacol Toxicol ; 101(3): 181-6, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697038

RESUMO

The effects of the K(+) channel opener, pinacidil on the spontaneous rhythmic contractions and contractions provoked by electrical field stimulation (50 Hz) or by oxytocin were investigated in the isolated uterus of the non-pregnant rat in oestrus. Pinacidil produced more potent inhibition of oxytocin-elicited contractions than of spontaneous rhythmic contractions or electrical field stimulation-induced contractions. Glibenclamide, a selective blocker of adenosine triphosphate (ATP)-sensitive K(+) (K(ATP)) channels, antagonized the pinacidil-induced inhibition of contractions elicited by oxytocin in a competitive manner. However, the pinacidil-induced inhibition of electrical field stimulation-elicited contractions and spontaneous rhythmic contractions was antagonized non-competitively by glibenclamide. In the uterine strips pre-contracted with 80 mM K(+), the pinacidil-induced maximal relaxation was not affected. The present data show that pinacidil exhibits potent relaxant properties in the rat non-pregnant uterus in oestrus and therefore should be taken into account as a possible agent for treatment of dysmenorrhoea. Based on glibenclamide affinity, it appears that the inhibitory response to pinacidil involves K(ATP )channels. We need further investigations to explain why the interaction between glibenclamide and pinacidil in this experimental model depends on the nature of contractions. The ability of pinacidil to completely relax the rat non-pregnant uterus pre-contracted with K(+)-rich solution suggests that K(+) channel-independent mechanism(s) also play a part in its relaxant effect.


Assuntos
Contração Muscular/efeitos dos fármacos , Pinacidil/farmacologia , Canais de Potássio/fisiologia , Útero/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Estimulação Elétrica , Feminino , Glibureto/farmacologia , Técnicas In Vitro , Contração Muscular/fisiologia , Ocitócicos/farmacologia , Ocitocina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Cloreto de Potássio/farmacologia , Ratos , Ratos Wistar , Útero/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA