Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Med Rep ; 27(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36825563

RESUMO

Signal transducer and activator of transcription 3 (STAT3) signalling serves an important role in carcinogenesis and cellular senescence, and its inhibition in tumour cells represents an attractive therapeutic target. Premature cellular senescence, a process of permanent proliferative arrest of cells in response to various inducers, such as cytostatic drugs or ionizing radiation, is accompanied by morphological and secretory changes, and by altered susceptibility to chemotherapeutic agents, which can thereby complicate their eradication by cancer therapies. In the present study, the responsiveness of proliferating and docetaxel (DTX)­induced senescent cancer cells to small molecule STAT3 inhibitor Stattic and its analogues was evaluated using tumour cell lines. These agents displayed cytotoxic effects in cell viability assays on both proliferating and senescent murine TRAMP­C2 and TC­1 cells; however, senescent cells were markedly more resistant. Western blot analysis revealed that Stattic and its analogues effectively inhibited constitutive STAT3 phosphorylation in both proliferating and senescent cells. Furthermore, whether the Stattic­derived inhibitor K1836 could affect senescence induction or modulate the phenotype of senescent cells was evaluated. K1836 treatment demonstrated no effect on senescence induction by DTX. However, the K1836 compound significantly modulated secretion of certain cytokines (interleukin­6, growth­regulated oncogene α and monocyte chemoattractant protein­1). In summary, the present study demonstrated differences between proliferating and senescent tumour cells in terms of their susceptibility to STAT3 inhibitors and demonstrated the ability of the new STAT3 inhibitor K1836 to affect the secretion of essential components of the senescence­associated secretory phenotype. The present study may be useful for further development of STAT3 inhibitor­based therapy of cancer or age­related diseases.


Assuntos
Citocinas , Fator de Transcrição STAT3 , Animais , Camundongos , Fosforilação , Fator de Transcrição STAT3/metabolismo , Expressão Gênica , Docetaxel/farmacologia , Citocinas/metabolismo , Senescência Celular
2.
Front Aging Neurosci ; 14: 1048260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561137

RESUMO

To date, the most studied drug in anti-aging research is the mTOR inhibitor - rapamycin. Despite its almost perfect anti-aging profile, rapamycin exerts one significant limitation - inappropriate physicochemical properties. Therefore, we have decided to utilize virtual high-throughput screening and fragment-based design in search of novel mTOR inhibiting scaffolds with suitable physicochemical parameters. Seven lead compounds were selected from the list of obtained hits that were commercially available (4, 5, and 7) or their synthesis was feasible (1, 2, 3, and 6) and evaluated in vitro and subsequently in vivo. Of all these substances, only compound 3 demonstrated a significant cytotoxic, senolytic, and senomorphic effect on normal and cancerous cells. Further, it has been confirmed that compound 3 is a direct mTORC1 inhibitor. Last but not least, compound 3 was found to exhibit anti-SASP activity concurrently being relatively safe within the test of in vivo tolerability. All these outstanding results highlight compound 3 as a scaffold worthy of further investigation.

3.
Plant J ; 103(1): 212-226, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32064689

RESUMO

Phosphatidic acid (PA), an important signalling and metabolic phospholipid, is predominantly localized in the subapical plasma membrane (PM) of growing pollen tubes. PA can be produced from structural phospholipids by phospholipase D (PLD), but the isoforms responsible for production of PM PA were not identified yet and their functional roles remain unknown. Following genome-wide bioinformatic analysis of the PLD family in tobacco, we focused on the pollen-overrepresented PLDδ class. Combining live-cell imaging, gene overexpression, lipid-binding and structural bioinformatics, we characterized five NtPLDδ isoforms. Distinct PLDδ isoforms preferentially localize to the cytoplasm or subapical PM. Using fluorescence recovery after photobleaching, domain deletion and swapping analyses we show that membrane-bound PLDδs are tightly bound to PM, primarily via the central catalytic domain. Overexpression analyses suggested isoform PLDδ3 as the most important member of the PLDδ subfamily active in pollen tubes. Moreover, only PLDδ3 shows significant constitutive PLD activity in vivo and, in turn, PA promotes binding of PLDδ3 to the PM. This forms a positive feedback loop leading to PA accumulation and the formation of massive PM invaginations. Tightly controlled production of PA generated by PLDδ3 at the PM is important for maintaining the balance between various membrane trafficking processes that are crucial for plant cell tip growth.


Assuntos
Nicotiana/enzimologia , Fosfolipase D/fisiologia , Proteínas de Plantas/fisiologia , Tubo Polínico/enzimologia , Genes de Plantas/genética , Isoenzimas , Fosfolipase D/genética , Fosfolipase D/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Nicotiana/genética
4.
J Agric Food Chem ; 67(10): 2954-2962, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30835453

RESUMO

The generation of selected Maillard-derived odorants from iso-oligosaccharides (IOSs), namely, from isomaltose, isomaltotriose, isomaltulose, and melibiose, was studied and compared with that from other oligosaccharides (maltose, lactose, and panose) and monosaccharides (glucose, galactose, and fructose). The study was carried out in binary mixtures of sugar and amino acids (glycine, proline, and cysteine) and upon wafer baking. The results indicate that IOSs induce browning and generation of the majority of the monitored odorants, in particular 4-hydroxy-2,5-dimethyl-3(2 H)-furanone, 2,3-butanedione, 2-acetyl-1-pyrroline, 2-propionyl-1-pyrroline, 2-acetylthiazole, and 2-acetyl-2-thiazoline, far more than the other oligosaccharides and to a higher or similar degree to that of the monosaccharides. Plausible mechanisms, consistent with the yields obtained from individual sugars, were proposed for the formation of the studied compounds. This newly obtained data brought for the first time evidence about the extraordinary potential of IOSs in the formation of several potent food odorants.


Assuntos
Aromatizantes/química , Odorantes/análise , Oligossacarídeos/química , Culinária , Análise de Alimentos , Reação de Maillard
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA