Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Reprod Domest Anim ; 59(6): e14635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837470

RESUMO

A 1-year-old European shorthair male cat with a normally developed penis was subjected to genetic, endocrinological and histological studies due to unilateral cryptorchidism. The blood testosterone level was typical for males, while the level of anti-Mullerian hormone (AMH) was very low. Surgical removal of internal reproductive organs was followed by a histological study, which revealed inactive testicles with neoplastic changes and derivatives of Mullerian ducts. Cytogenetic analysis showed a normal XY sex chromosome complement and molecular analysis confirmed the presence of Y-linked genes (SRY and ZFY). Although the level of AMH was low, two normal copies of the AMH gene were found using droplet digital PCR (ddPCR). Analysis of the coding sequences of two candidate genes (AMH and AMHR2) for persistent Mullerian duct syndrome (PMDS) in the affected cat and in control male cats (n = 24) was performed using the Sanger sequencing method. In the affected cat, homozygosity was found for three novel missense variants in Exon 1 (one SNP) and Exon 5 (two SNPs) of AMH, but the same homozygous genotypes were also observed in one and two control cats, respectively, whose sex development was not examined. Three known synonymous variants with homozygous status were found in AMHR2. We conclude that the DNA variants identified in AMH and AMHR2 are not responsible for PMDS in the affected cat.


Assuntos
Hormônio Antimülleriano , Doenças do Gato , Receptores de Peptídeos , Receptores de Fatores de Crescimento Transformadores beta , Animais , Gatos , Masculino , Hormônio Antimülleriano/genética , Doenças do Gato/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Criptorquidismo/genética , Criptorquidismo/veterinária , Transtorno 46,XY do Desenvolvimento Sexual/genética , Transtorno 46,XY do Desenvolvimento Sexual/veterinária , Mutação , Mutação de Sentido Incorreto
2.
Biol Reprod ; 109(5): 654-668, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665248

RESUMO

Kisspeptin (KP, encoded by Kiss1, binding to the Gpr54 receptor) is a neuropeptide conveying information on the metabolic status to the hypothalamic-pituitary-gonadal axis. KP acts together with dynorphin A (encoded by Pdyn) and neurokinin B (encoded by Tac2) to regulate reproduction. KP is crucial for the onset of puberty and is under the control of sirtuin (encoded by Sirt1). We hypothesize that the maternal cafeteria (CAF) diet has adverse effects on the offspring's hormonal, metabolic, and reproductive functions due to sex-specific alterations in the expression of Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 in the hypothalamus, and Kiss1, Gpr54, and Sirt1 in the liver. Rats were fed a CAF diet before pregnancy, during pregnancy, and during lactation. The vaginal opening was monitored. Offspring were sacrificed in three age points: PND 30, PND 35, and PND 60 (females) and PND 40, PND 45, and PND 60 (males). Their metabolic and hormonal status was assessed. mRNA for Kiss1, Gpr54, Pdyn, Tac2, and Sirt1 were measured by real-time PCR in the hypothalamus and/or livers. We found that CAF offspring had lower weight and altered body composition; increased cholesterol and triglyceride levels, sex-specific changes in glucose and insulin levels; sex-dependent changes in Sirt1/Kiss1 mRNA ratio in the hypothalamus; sex-specific alterations in Kiss1 and Sirt1 mRNA in the liver with more diversity in males; and a delayed puberty onset in females. We concluded that the mother's CAF diet leads to sex-specific alterations in metabolic and reproductive outcomes via Kiss1/Gpr54 and Sirt1 systems in offspring.


Assuntos
Kisspeptinas , Sirtuína 1 , Gravidez , Feminino , Masculino , Ratos , Animais , Kisspeptinas/genética , Kisspeptinas/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Maturidade Sexual/fisiologia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Dieta , Metaboloma , RNA Mensageiro/metabolismo
3.
Anim Reprod Sci ; 223: 106632, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33128907

RESUMO

Disorders of sex development (DSD) are important causes of infertility and sterility, and are risk factors for gonadal carcinogenesis. Many DSDs are caused by genetic factors, mainly sex chromosome abnormalities or mutations of genes involved in sexual development, as well as structural variants (SVs) - large deletions, duplications, and insertions, if these overlap genes involved in sex development. The aim of this study was to determine if there were SVs in four candidate genes - NR0B1 (DAX1), NR5A1, RSPO1, and SOX3 - using droplet digital PCR (ddPCR). There was study of two cohorts of dogs with DSD, including 55 animals with XX DSD and 15 with XY DSD. In addition, 40 control females and 10 control males were included in the study. Among cases, for which there were evaluations, a large deletion consisting of four exons of the NR5A1 gene was identified in a Yorkshire Terrier with a rudimentary penis, hypospadias, bilateral cryptorchidism, and spermatogenesis inactive testes. This is the first mutation in the NR5A1 gene leading to XY DSD phenotype to be reported in domestic animals. There were no SVs in the genes evaluated in the present study in the cohort of dogs with XX DSD. The results from this study provide evidence that the large structural variants of these genes are rarely associated with the DSD phenotype in dogs.


Assuntos
Transtornos do Desenvolvimento Sexual/veterinária , Doenças do Cão/genética , Predisposição Genética para Doença , Variação Genética , Aberrações dos Cromossomos Sexuais/veterinária , Fator Esteroidogênico 1/genética , Animais , Estudos de Coortes , Transtornos do Desenvolvimento Sexual/genética , Cães , Feminino , Regulação da Expressão Gênica , Genoma , Masculino
4.
Theriogenology ; 157: 483-489, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32898823

RESUMO

Cryptorchidism is the most common disorder of sex development (DSD) in dogs. This malformation is associated with reduced fertility and with a higher risk of gonadal cancer. Testicular descent is a complex process, and the functions of many environmental and genetic factors are crucial for the proper migration of fetal gonads into the scrotum. Among these, the hormone INSL3 (insulin-like peptide 3) and its receptor RXFP2 (relaxin family peptide receptor 2) play crucial roles in the transabdominal migration of the testes. The genetic background of canine cryptorchidism is poorly elucidated. The aim of this study was to compare the transcript and methylation levels of INSL3 and RXFP2 genes in undescended and descended testes of isolated unilateral cryptorchids, and in gonads of control male dogs with scrotal testes. Next, we searched for polymorphic variants in the 5'-regulatory regions of both genes associated with predispositions to cryptorchidism. The INSL3 transcript level was significantly higher in the undescended testes than in the descended testes of both the affected and control dogs. On the other hand, the mRNA level of RXFP2 was significantly lower in the retained gonads of cryptorchids than in the scrotal testes. The methylation level of a single CpG site located 15 bp upstream of the translation start codon in INSL3 was significantly higher in the testes of the control dogs than in both gonads of cryptorchids. The methylation level of 14 CpG sites in the coding region of INSL3 was significantly higher in undescended testes than in the scrotal testes, which may be associated with the higher mRNA levels of INSL3 observed in these samples. The methylation pattern of two CpG sites in the 5'-flanking region of RXFP2 was similar in both descended and undescended testes. We detected three and seven single nucleotide polymorphisms (SNPs) in the 5'-regulatory regions of INSL3 and RXFP2, respectively. Among these, the frequency of A > C substitution (ss7093349755) located 495 bp upstream of the transcription start site of RXFP2 differed significantly between cryptorchids and control dogs. Our study showed two possible genetic biomarkers associated with canine cryptorchidism: a hypomethylation of a single CpG site in the 5'-flanking region of INSL3, and the ss7093349755 SNP in the 5'-flanking region of RXFP2.


Assuntos
Criptorquidismo , Doenças do Cão , Animais , Biomarcadores/metabolismo , Criptorquidismo/genética , Criptorquidismo/metabolismo , Criptorquidismo/veterinária , Doenças do Cão/genética , Doenças do Cão/metabolismo , Cães , Insulina/metabolismo , Masculino , Metilação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Testículo/metabolismo
5.
Anim Biotechnol ; 31(4): 306-313, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30950765

RESUMO

In humans, the dysfunction of the adenomatous polyposis coli (APC) gene causes hereditary familial adenomatous polyposis (FAP) and increased risk of colorectal cancer (CRC). The severity of polyposis varies between individuals, but genetic basis for this is in large part unknown. This variability also occurs in our porcine model of FAP, based on an APC1311 mutation (orthologous to human APC1309). Since loss of TAP1 function can lead to CRC in humans, we searched for germline polymorphisms in APC1311/+ pigs with low (LP) and high (HP) levels of polyposis, as well as in wild-type pigs representing six breeds and a commercial line. The distribution of 40 identified polymorphic variants was similar in the LP and HP pigs. In contrast, the TAP1 transcript level was significantly higher in normal colon mucosa of HP pigs than in LP pigs. Moreover, six SNPs showed significant effects on TAP1 promoter activity, but no correlation with severity of polyposis was observed. Analysis of DNA methylation in the promoter region showed that one CpG site differed significantly between LP and HP pigs. We conclude that TAP1 genotype may not itself be associated with polyposis, but our findings concerning its expression suggest a role in the development of polyps.


Assuntos
Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Polipose Adenomatosa do Colo , Pólipos do Colo , Metilação de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/genética , Animais , Pólipos do Colo/epidemiologia , Pólipos do Colo/genética , Modelos Animais de Doenças , Humanos , Mutação , Suínos
6.
Chromosome Res ; 27(3): 271-284, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30656515

RESUMO

Proper expression of the PPARG gene, which encodes a key transcription factor of adipogenesis, is indispensable in the formation of mature adipocytes. The positioning of a gene within the nuclear space has been implicated in gene regulation. We here report on the significance of the PPARG gene's nuclear positioning for its activity during in vitro adipogenesis in the pig. We used an established system of differentiation of mesenchymal stem cells derived from bone marrow and adipose tissue into adipocytes. The differentiation process was carried out for 7 days, and the cells were examined using the 3D DNA/immuno-FISH and RNA/DNA-FISH approaches. PPARG transcript level was measured using real-time PCR, and PPARγ activity was detected with colorimetric assay. Changes in the nuclear location of the PPARG gene were observed when we compared undifferentiated mesenchymal stem cells with mature adipocytes. The gene moved from the nuclear periphery to the nuclear center as its transcriptional activity increased. The RNA/DNA-FISH approach shows that differences in primary transcript production correlated with the allele's nuclear positioning. Transcriptionally active alleles preferentially occupy the central part of the nucleus, while inactive alleles are found on the nuclear periphery. We also show that transcription of PPARG begins with one allele, but that both alleles are active in later stages of differentiation. Our results provide evidence that functionally distinct alleles of the PPARG gene are positioned in different parts of the cell nucleus. This confirms the importance of nuclear architecture to the regulation of PPARG gene transcription, and thus to the fate of the adipose cell.


Assuntos
Adipogenia , Núcleo Celular/metabolismo , PPAR gama/genética , Adipócitos/citologia , Adipogenia/genética , Alelos , Animais , Diferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Mesenquimais/citologia , PPAR gama/metabolismo , Suínos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
7.
PLoS One ; 13(2): e0193464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29474484

RESUMO

Dietary triggers acting on a developing fetus can affect the functioning of the body in later life; this can be observed on various levels, including epigenetic modifications and gene expression. Early-life programmed changes may be transmitted to successive generations. In this study, the impact of prenatal restricted diet was studied in four generations of rats. We hypothesized that this diet can induce changes in the expression of major genes involved in two epigenetic mechanisms: DNA methylation and histone modifications. The transcript level of six genes involved in these processes (Dnmt1, Dnmt3a, Dnmt3b, Mecp2, Hdac1, and Sin3a) was therefore determined in three tissues (liver, adipose, and muscle). This diet was found to have no effect on the F0 pregnant females. In the F1 progeny (fetuses at day 19 of pregnancy and 4-week-old rats) significant differences in the expression of the genes were observed mostly in the liver; in subsequent generations, we therefore studied only this tissue. Among the genes encoding DNA methyltransferases, significant changes were observed for Dnmt1 in the F1 animals from the restricted group, but these were no longer evident in F2 and F3. The Dnmt3a and Dnmt3b genes showed no differences in mRNA level in F1 fetuses. Concerning the transcript level of the Mecp2 gene only in F1 generation significant changes were found. For the histone modification genes, an increase in the expression of Hdac1 in fetus liver was found in F1 and F2, while its level decreased in F3. The abundance of the Sin3a transcript varied in all generations. It was also found that the mRNA levels of the studied genes correlated highly positive with each other, but only in fetuses from the F1 restricted group. The DNA methylation cell potential, defined as the ratio of SAM (S-adenosylmethionine) to SAH (S-adenosylhomocysteine), was measured in the liver, with no alterations being found in the restricted groups. Evaluation of global histone H3 acetylation showed that it underwent a significant increase in the fetal livers of F1, while during aging (four-week old animals) this difference was no longer maintained. A tendency of increased H3 acetylation in fetuses was also detected in F2 generation. In F1 fetuses from restricted group the increased H3 acetylation positively correlated with transcriptional status of the studied genes. Our results indicate that the prenatal restriction diet can affect the activity of genes involved in epigenetic mechanisms in the liver across generations. Moreover, this feeding type influenced the global histone H3 acetylation in fetal liver.


Assuntos
Dieta , Histonas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Acetilação , Animais , Feminino , Desenvolvimento Fetal/genética , Fígado/metabolismo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
8.
BMC Genet ; 16: 113, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26383117

RESUMO

BACKGROUND: Adipose tissue is recognized as a highly active metabolic and endocrine organ. The hormones secreted by this tissue play an important role in many biochemical processes. It is known that dysfunction of adipocytes can cause insulin resistance, type 2 diabetes or hyperlipidemia. One of the important factors produced in fat tissue is resistin (Retn). It has been postulated that this hormone is involved in glucose homeostasis and insulin resistance. In the present study, the impact of five diet types (ad libitum normal, restricted, high-carbohydrate, high-fat and high-protein) on the Retn gene transcription and methylation profile was evaluated in rats of different ages. RESULTS: Transcript levels and methylation status of the Retn gene were studied in three tissues (muscle, subcutaneous and abdominal fat) in rats at 30, 60 and 120 days of age. We found an effect of tissue type on the Retn transcription in all diet types, as well as an effect of feeding type and age on the mRNA levels for high-fat and high-protein diets. The DNA methylation levels depended only on tissue type. CONCLUSIONS: The obtained results demonstrate a tissue-specific expression pattern and a characteristic DNA methylation profile of the Retn gene in rats. Retn expression seems to be sensitive to nutritional changes, but only in the case of high-fat and high-protein diets. Moreover, an effect of age on Retn mRNA content was observed in these diets. Because no correlation between the transcript level and methylation status was found, we assumed that the transcription control of this gene by DNA methylation of the promoter seems to be unlikely.


Assuntos
Metilação de DNA/genética , Dieta , Resistina/genética , Região 5'-Flanqueadora/genética , Envelhecimento/genética , Animais , Pareamento de Bases/genética , Sequência de Bases , Carboidratos da Dieta , Masculino , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Resistina/metabolismo
9.
J Feline Med Surg ; 16(12): 1016-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24718294

RESUMO

A 2-month-old kitten exhibited simultaneously an imperforate anus, hypospadias, rectourethral fistula and genital dysgenesis (penis restricted to the glans, absence of prepuce and bifid scrotum). Surgical correction consisted of separation of the urinary and digestive tracts, perineal urethrostomy and connection of the rectum to the newly made anal opening. Pathological examination of the testes, conventionally removed at 9 months of age, showed no mature spermatozoa and underdevelopment of germ and Leydig cells. In humans, the absence of an anal opening in association with abnormal sexual development defines the urorectal septum malformation sequence. Here, we describe the first case of this syndrome in a kitten with a normal male karyotype (38,XY) and a normal coding sequence for the SRY gene. Both the rectourethral fistula and observed genital abnormalities might have been induced by a disturbance in the hedgehog signalling pathway. However, although four polymorphic sites were identified by DHH gene sequencing, none cosegregated with the malformation.


Assuntos
Anus Imperfurado/veterinária , Doenças do Gato/diagnóstico , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/veterinária , Animais , Animais Recém-Nascidos , Anus Imperfurado/diagnóstico , Doenças do Gato/patologia , Gatos , Diagnóstico Diferencial , Masculino , Fístula Retal/diagnóstico , Fístula Retal/veterinária , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA