Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6230, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266342

RESUMO

TET (Ten-Eleven Translocation) dioxygenases effect DNA demethylation through successive oxidation of the methyl group of 5-methylcytosine (5mC) in DNA. In humans and in mouse models, TET loss-of-function has been linked to DNA damage, genome instability and oncogenesis. Here we show that acute deletion of all three Tet genes, after brief exposure of triple-floxed, Cre-ERT2-expressing mouse embryonic stem cells (mESC) to 4-hydroxytamoxifen, results in chromosome mis-segregation and aneuploidy; moreover, embryos lacking all three TET proteins showed striking variation in blastomere numbers and nuclear morphology at the 8-cell stage. Transcriptional profiling revealed that mRNA encoding a KH-domain protein, Khdc3 (Filia), was downregulated in triple TET-deficient mESC, concomitantly with increased methylation of CpG dinucleotides in the vicinity of the Khdc3 gene. Restoring KHDC3 levels in triple Tet-deficient mESC prevented aneuploidy. Thus, TET proteins regulate Khdc3 gene expression, and TET deficiency results in mitotic infidelity and genome instability in mESC at least partly through decreased expression of KHDC3.


Assuntos
Aneuploidia , Proteínas de Ligação a DNA , Dioxigenases , Células-Tronco Embrionárias Murinas , Animais , Camundongos , 5-Metilcitosina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/metabolismo
2.
PLoS Comput Biol ; 16(5): e1007890, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453720

RESUMO

The biconcave disk shape of the mammalian red blood cell (RBC) is unique to the RBC and is vital for its circulatory function. Due to the absence of a transcellular cytoskeleton, RBC shape is determined by the membrane skeleton, a network of actin filaments cross-linked by spectrin and attached to membrane proteins. While the physical properties of a uniformly distributed actin network interacting with the lipid bilayer membrane have been assumed to control RBC shape, recent experiments reveal that RBC biconcave shape also depends on the contractile activity of nonmuscle myosin IIA (NMIIA) motor proteins. Here, we use the classical Helfrich-Canham model for the RBC membrane to test the role of heterogeneous force distributions along the membrane and mimic the contractile activity of sparsely distributed NMIIA filaments. By incorporating this additional contribution to the Helfrich-Canham energy, we find that the RBC biconcave shape depends on the ratio of forces per unit volume in the dimple and rim regions of the RBC. Experimental measurements of NMIIA densities at the dimple and rim validate our prediction that (a) membrane forces must be non-uniform along the RBC membrane and (b) the force density must be larger in the dimple than the rim to produce the observed membrane curvatures. Furthermore, we predict that RBC membrane tension and the orientation of the applied forces play important roles in regulating this force-shape landscape. Our findings of heterogeneous force distributions on the plasma membrane for RBC shape maintenance may also have implications for shape maintenance in different cell types.


Assuntos
Deformação Eritrocítica , Membrana Eritrocítica/fisiologia , Eritrócitos/citologia , Miosinas/química , Citoesqueleto de Actina/química , Reagentes de Ligações Cruzadas/química , Glicoforinas/química , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Microscopia de Fluorescência , Cadeias Pesadas de Miosina/química , Faloidina/química , Rodaminas/química , Estresse Mecânico
3.
Mol Biol Cell ; 29(16): 1963-1974, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30088796

RESUMO

The mouse eye lens was used as a model for multiscale transfer of loads. In the lens, compressive strain is distributed across specific lens tissue microstructures, including the extracellular capsule, as well as the epithelial and fiber cells. The removal of high loads resulted in complete recovery of most, but not all, microstructures.


Assuntos
Cápsula do Cristalino/patologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Forma Celular , Células Epiteliais/patologia , Camundongos Endogâmicos C57BL
4.
Proc Natl Acad Sci U S A ; 115(19): E4377-E4385, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29610350

RESUMO

The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.


Assuntos
Actinas/metabolismo , Forma Celular/fisiologia , Membrana Eritrocítica/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Trifosfato de Adenosina/metabolismo , Forma Celular/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos
5.
Methods Mol Biol ; 1698: 205-228, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076092

RESUMO

During erythropoiesis, erythroblasts undergo dramatic morphological changes to produce mature erythrocytes. Many unanswered questions regarding the molecular mechanisms behind these changes can be addressed with high-resolution fluorescence imaging. Immunofluoresence staining enables localization of specific molecules, organelles, and membrane components in intact cells at different phases of erythropoiesis. Confocal laser scanning microscopy can provide high-resolution, three-dimensional images of stained structures, which can be used to dissect the molecular mechanisms driving erythropoiesis. The sample preparation, staining procedure, imaging parameters, and image analysis methods used directly affect the quality of the confocal images and the amount and accuracy of information that they can provide. Here, we describe methods to dissect erythropoietic tissues from mice, to perform immunofluorescence staining and confocal imaging of various molecules, organelles and structures of interest in erythroblasts, and to present and quantitatively analyze the data obtained in these fluorescence images.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Imunofluorescência , Microscopia de Fluorescência , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Eritropoese , Feminino , Feto , Processamento de Imagem Assistida por Computador , Fígado/citologia , Camundongos , Microscopia Confocal , Microscopia de Fluorescência/métodos , Gravidez
6.
Blood ; 130(9): 1144-1155, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28729432

RESUMO

Biogenesis of mammalian red blood cells requires nuclear expulsion by orthochromatic erythoblasts late in terminal differentiation (enucleation), but the mechanism is largely unexplained. Here, we employed high-resolution confocal microscopy to analyze nuclear morphology and F-actin rearrangements during the initiation, progression, and completion of mouse and human erythroblast enucleation in vivo. Mouse erythroblast nuclei acquire a dumbbell-shaped morphology during enucleation, whereas human bone marrow erythroblast nuclei unexpectedly retain their spherical morphology. These morphological differences are linked to differential expression of Lamin isoforms, with primary mouse erythroblasts expressing only Lamin B and primary human erythroblasts only Lamin A/C. We did not consistently identify a continuous F-actin ring at the cell surface constriction in mouse erythroblasts, nor at the membrane protein-sorting boundary in human erythroblasts, which do not have a constriction, arguing against a contractile ring-based nuclear expulsion mechanism. However, both mouse and human erythroblasts contain an F-actin structure at the rear of the translocating nucleus, enriched in tropomodulin 1 (Tmod1) and nonmuscle myosin IIB. We investigated Tmod1 function in mouse and human erythroblasts both in vivo and in vitro and found that absence of Tmod1 leads to enucleation defects in mouse fetal liver erythroblasts, and in CD34+ hematopoietic stem and progenitor cells, with increased F-actin in the structure at the rear of the nucleus. This novel structure, the "enucleosome," may mediate common cytoskeletal mechanisms underlying erythroblast enucleation, notwithstanding the morphological heterogeneity of enucleation across species.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Eritroblastos/metabolismo , Tropomodulina/metabolismo , Animais , Medula Óssea/metabolismo , Diferenciação Celular , Forma do Núcleo Celular , Polaridade Celular , Feto/metabolismo , Técnicas de Silenciamento de Genes , Laminas/metabolismo , Fígado/embriologia , Camundongos Endogâmicos C57BL , Miosina não Muscular Tipo IIB/metabolismo , Isoformas de Proteínas/metabolismo
7.
Exp Eye Res ; 156: 58-71, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26971460

RESUMO

The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.


Assuntos
Citoesqueleto de Actina/fisiologia , Cristalino/embriologia , Animais , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Humanos , Cristalino/citologia , Cristalino/crescimento & desenvolvimento , Proteínas dos Microfilamentos/metabolismo
8.
PLoS Genet ; 11(10): e1005526, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26452208

RESUMO

Circulating red blood cells (RBCs) are essential for tissue oxygenation and homeostasis. Defective terminal erythropoiesis contributes to decreased generation of RBCs in many disorders. Specifically, ineffective nuclear expulsion (enucleation) during terminal maturation is an obstacle to therapeutic RBC production in vitro. To obtain mechanistic insights into terminal erythropoiesis we focused on FOXO3, a transcription factor implicated in erythroid disorders. Using an integrated computational and experimental systems biology approach, we show that FOXO3 is essential for the correct temporal gene expression during terminal erythropoiesis. We demonstrate that the FOXO3-dependent genetic network has critical physiological functions at key steps of terminal erythropoiesis including enucleation and mitochondrial clearance processes. FOXO3 loss deregulated transcription of genes implicated in cell polarity, nucleosome assembly and DNA packaging-related processes and compromised erythroid enucleation. Using high-resolution confocal microscopy and imaging flow cytometry we show that cell polarization is impaired leading to multilobulated Foxo3-/- erythroblasts defective in nuclear expulsion. Ectopic FOXO3 expression rescued Foxo3-/- erythroblast enucleation-related gene transcription, enucleation defects and terminal maturation. Remarkably, FOXO3 ectopic expression increased wild type erythroblast maturation and enucleation suggesting that enhancing FOXO3 activity may improve RBCs production. Altogether these studies uncover FOXO3 as a novel regulator of erythroblast enucleation and terminal maturation suggesting FOXO3 modulation might be therapeutic in disorders with defective erythroid maturation.


Assuntos
Eritrócitos/metabolismo , Eritropoese/genética , Fatores de Transcrição Forkhead/genética , Biologia de Sistemas , Animais , Autofagia/genética , Células da Medula Óssea/metabolismo , Polaridade Celular/genética , Eritroblastos/metabolismo , Eritrócitos/citologia , Citometria de Fluxo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Homeostase , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo
9.
J Histochem Cytochem ; 60(6): 414-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22473940

RESUMO

Lens fiber cells exhibit a high degree of hexagonal packing geometry, determined partly by tropomodulin 1 (Tmod1), which stabilizes the spectrin-actin network on lens fiber cell membranes. To ascertain whether Tmod1 is required during epithelial cell differentiation to fiber cells or during fiber cell elongation and maturation, the authors quantified the extent of fiber cell disorder in the Tmod1-null lens and determined locations of disorder by confocal microscopy and computational image analysis. First, nearest neighbor analysis of fiber cell geometry in Tmod1-null lenses showed that disorder is confined to focal patches. Second, differentiating epithelial cells at the equator aligned into ordered meridional rows in Tmod1-null lenses, with disordered patches first observed in elongating fiber cells. Third, as fiber cells were displaced inward in Tmod1-null lenses, total disordered area increased due to increased sizes (but not numbers) of individual disordered patches. The authors conclude that Tmod1 is required first to coordinate fiber cell shapes and interactions during tip migration and elongation and second to stabilize ordered fiber cell geometry during maturation in the lens cortex. An unstable spectrin-actin network without Tmod1 may result in imbalanced forces along membranes, leading to fiber cell rearrangements during elongation, followed by propagation of disorder as fiber cells mature.


Assuntos
Cristalino/citologia , Tropomodulina/fisiologia , Actinas/ultraestrutura , Animais , Contagem de Células , Diferenciação Celular , Membrana Celular/ultraestrutura , Movimento Celular , Forma Celular , Células Epiteliais/citologia , Cristalino/metabolismo , Camundongos , Camundongos Knockout , Tropomodulina/genética
10.
J Cell Biol ; 186(6): 915-28, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19752024

RESUMO

Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased gammaTM levels, loss of F-actin from membranes, and disrupted distribution of beta2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and gammaTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin-actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.


Assuntos
Membrana Celular/metabolismo , Forma Celular , Células Epiteliais/metabolismo , Cristalino/metabolismo , Tropomodulina/metabolismo , Citoesqueleto de Actina/metabolismo , Envelhecimento , Animais , Proteínas de Transporte/metabolismo , Membrana Celular/ultraestrutura , Células Epiteliais/ultraestrutura , Cristalino/citologia , Cristalino/ultraestrutura , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Tropomodulina/deficiência , Tropomodulina/genética , Tropomiosina/metabolismo
11.
Mol Cell Neurosci ; 28(2): 205-14, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15691703

RESUMO

Nuclear LIM domain-only proteins (LMOs), which consist of two closely spaced 50 amino acid Zn2+-finger protein interaction modules mediate interactions between several classes of transcription factors important for development. LMO2 is necessary for development of the entire hematopoietic system and overexpression of LMO1 or LMO2 results in human acute T cell leukemia. LMO4 is the most widely expressed LMO but its normal function is unknown. During development, LMO4 is expressed in dividing neuroepithelial cells within the ventricular zone along the entire rostrocaudal axis of the nervous system. In telencephalic and spinal cord regions of the CNS, LMO4 is highly expressed in ventral but is low in dorsal proliferating neuroepithelial cells. To understand the role of LMO4 during mouse development, we generated a homozygous null mutation in the gene. We found that LMO4 is required for proper closure of the anterior neural tube. In the absence of LMO4, elevation, bending, and proliferation of the ventral neural epithelium and consequent fusion of the prospective dorsal ends of the neural tube do not occur. LMO4 mutant mice die embryonically and exhibit exencephaly, which is associated with abnormal patterns of cell proliferation and with high levels of apoptotic cell death within the neuroepithelium. LMO4 is thus essential for normal patterns of proliferation and for survival of neural epithelial cells in the rostral neural tube. LMO4 is also expressed in Schwann cell progenitors after these contact neurites, a process mediated in part by neuregulin (Nrg).


Assuntos
Sistema Nervoso Central/anormalidades , Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/genética , Padronização Corporal/genética , Comunicação Celular/fisiologia , Diferenciação Celular/genética , Proliferação de Células , Sistema Nervoso Central/fisiopatologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas com Domínio LIM , Camundongos , Camundongos Knockout , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/metabolismo , Neuregulina-1/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estrutura Terciária de Proteína/genética , Células de Schwann/citologia , Células de Schwann/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA