Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 17(1): 130, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32331523

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is the most devastating stroke subtype, with a poor prognosis and few proven treatments. Neuroinflammation is associated with ICH-induced brain injury and unfavorable outcomes. There is growing evidence that Dickkopf (DKK) 3 plays a key role in the adaptive anti-inflammatory and neuroprotective responses following intracerebral hemorrhage. This study aimed to evaluate the protective effects of DKK3 against brain edema and neuroinflammation in a mice model of ICH. METHODS: Male, adult CD1 mice were subjected to sham or ICH surgery using a collagenase injection model. ICH animals received either recombinant DKK3, Kremen-1 siRNA, or DVL-1 siRNA. The neurobehavioral deficits were evaluated at 24 h, 72 h, and 28 days after ICH induction. Western blot and immunofluorescence were employed to examine the expression and localization of DKK3, Kremen-1, Dishevelled-1 (DVL-1), c-JUN N-terminal kinase (JNK), Activator protein-1 (AP-1), cleaved caspase-1, NF-κB, and IL-1ß in the brain. RESULTS: The expression of endogenous DKK3 and DVL-1 was transiently decreased after ICH compared to that in the sham group. Compared to the mice of ICH, exogenous rDKK3 administration reduced the brain water content and affected the neurological functions in ICH mice. Moreover, DKK3 was colocalized with Kremen-1 in microglia. Using a Kremen-1 or DVL-1 siRNA-induced in vivo knockdown approach, we demonstrated that the effects of DKK3 against ICH were mediated, at least partly, by the Kremen-1 and DVL-1 pathways. CONCLUSIONS: DKK3 improves the neurological outcomes, potentially by decreasing JNK/AP-1-mediated inflammation, thereby ameliorating the short- and long-term sequelae after ICH.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Inflamação/metabolismo , Inflamação/patologia , Animais , Proteínas Desgrenhadas/metabolismo , MAP Quinase Quinase 4/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/metabolismo
2.
Exp Neurol ; 312: 72-81, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503192

RESUMO

Disruption of the blood-brain barrier results in the formation of edema and contributes to the loss of neurological function following intracerebral hemorrhage (ICH). This study examined insulin-like growth factor-1 (IGF-1) as a treatment and its mechanism of action for protecting the blood-brain barrier after ICH in mice. 171 Male CD-1 mice were subjected to ICH via collagenase or autologous blood. A dose study for recombinant human IGF-1 (rhIGF-1) was performed. Brain water content and behavioral deficits were evaluated at 24 and 72 h after the surgery, and Evans blue extravasation and hemoglobin assay were conducted at 24 h. Western blotting was performed for the mechanism study and interventions were used targeting the IGF-1R/GSK3ß/MEKK1 pathway. rhIGF-1 reduced edema and blood-brain barrier permeability, and improved neurobehavior outcomes. Western blots showed that rhIGF-1 reduced p-GSK3ß and MEKK1 expression, thereby increasing occludin and claudin-5 expression. Inhibition and knockdown of IGF-1R reversed the therapeutic benefits of rhIGF-1. The findings within suggest that stimulation of the IGF-1R is a therapeutic target for ICH which may lead to improved neurofunctional and blood-brain barrier protection.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/fisiologia , Hemorragia Cerebral/metabolismo , Fator de Crescimento Insulin-Like I/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Injeções Intraventriculares , Masculino , Camundongos , RNA Interferente Pequeno/administração & dosagem , Receptor IGF Tipo 1/agonistas , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo
3.
J Neuroinflammation ; 15(1): 106, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642894

RESUMO

BACKGROUND: Neuroinflammation plays an important role in the pathogenesis of intracerebral hemorrhage (ICH)-induced secondary brain injury. Activation of melanocortin receptor 4 (MC4R) has been shown to elicit anti-inflammatory effects in many diseases. The objective of this study was to explore the role of MC4R activation on neuroinflammation in a mouse ICH model and to investigate the contribution of adenosine monophosphate-activated protein kinase (AMPK)/c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway in MC4R-mediated protection. METHODS: Adult male CD1 mice (n = 189) were subjected to intrastriatal injection of bacterial collagenase or sham surgery. The selective MC4R agonist RO27-3225 was administered by intraperitoneal injection at 1 h after collagenase injection. The specific MC4R antagonist HS024 and selective AMPK inhibitor dorsomorphin were administered prior to RO27-3225 treatment to elucidate potential mechanism. Short- and long-term neurobehavioral assessments, brain water content, immunofluorescence staining, and western blot were performed. RESULTS: The expression of MC4R and p-AMPK increased after ICH with a peak at 24 h. MC4R was expressed by microglia, neurons, and astrocytes. Activation of MC4R with RO27-3225 improved the neurobehavioral functions, decreased brain edema, and suppressed microglia/macrophage activation and neutrophil infiltration after ICH. RO27-3225 administration increased the expression of MC4R and p-AMPK while decreasing p-JNK, p-p38 MAPK, TNF-α, and IL-1ß expression, which was reversed with inhibition of MC4R and AMPK. CONCLUSIONS: Our study demonstrated that activation of MC4R with RO27-3225 attenuated neuroinflammation through AMPK-dependent inhibition of JNK and p38 MAPK signaling pathway, thereby reducing brain edema and improving neurobehavioral functions after experimental ICH in mice. Therefore, the activation of MC4R with RO27-3225 may be a potential therapeutic approach for ICH management.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anti-Inflamatórios/uso terapêutico , Encefalite/tratamento farmacológico , Peptídeos/uso terapêutico , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Hemorragia Cerebral/complicações , Modelos Animais de Doenças , Encefalite/etiologia , Inibidores Enzimáticos/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase 4/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Infiltração de Neutrófilos/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Transl Stroke Res ; 9(2): 185-198, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29354887

RESUMO

Most large vessel stroke patients have permanent occlusion, for which there are no current treatment options. Recent case studies have indicated delayed recanalization, that is recanalization outside of the 6-h treatment window, may lead to improved outcome. We hypothesized that delayed recanalization will restore cerebral blood flow, leading to improved function in rats. Male SD rats were subjected to pMCAO or sham surgery. Delayed recanalization was performed on either day 3, 7, or 14 after pMCAO in a subset of animals. Cerebral blood flow was monitored during suture insertion, during recanalization, and then at sacrifice. Neurological function was evaluated for 1 week after delayed recanalization and at 4 weeks post-ictus. After sacrifice, cerebral morphology was measured. Compared to no treatment, delayed recanalization restored cerebral blood flow, leading to sensorimotor recovery, improved learning and memory, reduced infarct volume, and increased neural stem/progenitor cells within the infarction. The data indicate that earlier delayed recanalization leads to better functional and histological recovery. Yet, even restoring cerebral blood flow 14 days after pMCAO allows for rats to regain sensorimotor function. This exploratory study suggests that delayed recanalization may be a viable option for treatment of permanent large vessel stroke.


Assuntos
Procedimentos Endovasculares/métodos , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/cirurgia , Recuperação de Função Fisiológica/fisiologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Exame Neurológico , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
5.
J Cereb Blood Flow Metab ; 38(3): 433-446, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28318366

RESUMO

Cerebellar haemorrhage accounts for 5-10% of all intracerebral haemorrhages and leads to severe, long-lasting functional deficits. Currently, there is limited research on this stroke subtype, which may be due to the lack of a suitable composite neuroscoring system specific for cerebellar injury in rodents. The purpose of this study is to develop a comprehensive composite neuroscore test for cerebellar injury using a rat model of cerebellar haemorrhage. Sixty male Sprague-Dawley rats were subjected to either sham surgery or cerebellar haemorrhage. Twenty-four hours post-injury, neurological behaviour was evaluated using 17 cost-effective and easy-to-perform tests, and a composite neuroscore was developed. The composite neuroscore was then used to assess functional recovery over seven days after cerebellar haemorrhage. Differences in the composite neuroscore deficits for the mild and moderate cerebellar haemorrhage models were observed for up to five days post-ictus. Until now, a composite neuroscore for cerebellar injury was not available for rodent studies. Herein, using mild and moderate cerebellar haemorrhage rat models a composite neuroscore for cerebellar injury was developed and used to assess functional deficits after cerebellar haemorrhage. This composite neuroscore may also be useful for other cerebellar injury models.


Assuntos
Comportamento Animal/efeitos dos fármacos , Doenças Cerebelares/psicologia , Hemorragias Intracranianas/psicologia , Acidente Vascular Cerebral/psicologia , Animais , Água Corporal , Química Encefálica , Doenças Cerebelares/patologia , Hematoma/patologia , Hemorragias Intracranianas/patologia , Masculino , Força Muscular , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Reflexo , Acidente Vascular Cerebral/patologia
6.
J Neurochem ; 143(6): 750-760, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030969

RESUMO

Adropin is expressed in the CNS and plays a crucial role in the development of stroke. However, little is currently known about the effects of adropin on the blood-brain barrier (BBB) function after intracerebral hemorrhage (ICH). In this study, the role of adropin in collagenase-induced ICH was investigated in mice. At 1-h post-ICH, mice were administered with recombinant human adropin by intranasal. Brain water +content, BBB permeability, and neurological function were measured at different time intervals. Proteins were quantified using western blot analysis, and the localizations of adropin and Notch1 were visualized via immunofluorescence staining. It is shown that adropin reduced brain water content and improved neurological functions. Adropin preserved the functionality of BBB by increasing N-cadherin expression and reducing extravasation of albumin. Moreover, in vivo knockdown of Notch1 and Hes1 both abolished the protective effects of adropin. Taken together, our data demonstrate that adropin constitutes a potential treatment value for ICH by preserving BBB and improving functional outcomes through the Notch1 signaling pathway.


Assuntos
Proteínas Sanguíneas/metabolismo , Barreira Hematoencefálica/fisiologia , Hemorragia Cerebral/metabolismo , Peptídeos/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Proteínas Sanguíneas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Hemorragia Cerebral/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Peptídeos/farmacologia , Transdução de Sinais/fisiologia
7.
J Cereb Blood Flow Metab ; 37(4): 1299-1310, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27317656

RESUMO

Heme-degradation after erythrocyte lysis plays an important role in the pathophysiology of intracerebral hemorrhage. Low-density lipoprotein receptor-related protein-1 is a receptor expressed predominately at the neurovascular interface, which facilitates the clearance of the hemopexin and heme complex. In the present study, we investigated the role of low-density lipoprotein receptor-related protein-1 in heme removal and neuroprotection in a mouse model of intracerebral hemorrhage. Endogenous low-density lipoprotein receptor-related protein-1 and hemopexin were increased in ipsilateral brain after intracerebral hemorrhage, accompanied by increased hemoglobin levels, brain water content, blood-brain barrier permeability and neurological deficits. Exogenous human recombinant low-density lipoprotein receptor-related protein-1 protein reduced hematoma volume, brain water content surrounding hematoma, blood-brain barrier permeability and improved neurological function three days after intracerebral hemorrhage. The expression of malondialdehyde, fluoro-Jade C positive cells and cleaved caspase 3 was increased three days after intracerebral hemorrhage in the ipsilateral brain tissues and decreased with recombinant low-density lipoprotein receptor-related protein-1. Intracerebral hemorrhage decreased and recombinant low-density lipoprotein receptor-related protein-1 increased the levels of superoxide dismutase 1. Low-density lipoprotein receptor-related protein-1 siRNA reduced the effect of human recombinant low-density lipoprotein receptor-related protein-1 on all outcomes measured. Collectively, our findings suggest that low-density lipoprotein receptor-related protein-1 contributed to heme clearance and blood-brain barrier protection after intracerebral hemorrhage. The use of low-density lipoprotein receptor-related protein-1 as supplement provides a novel approach to ameliorating intracerebral hemorrhage brain injury via its pleiotropic neuroprotective effects.


Assuntos
Hemorragia Cerebral/metabolismo , Heme/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Receptores de LDL/metabolismo , Receptores de LDL/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/uso terapêutico , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Hemorragia Cerebral/tratamento farmacológico , Hemopexina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Masculino , Camundongos Endogâmicos , Fármacos Neuroprotetores/administração & dosagem , Receptores de LDL/administração & dosagem , Proteínas Recombinantes , Proteínas Supressoras de Tumor/administração & dosagem
8.
Med Gas Res ; 4(1): 3, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24533741

RESUMO

Argon is a noble gas element that has demonstrated narcotic and protective abilities that may prove useful in the medical field. The earliest records of argon gas have exposed its ability to exhibit narcotic symptoms at hyperbaric pressures greater than 10 atmospheres with more recent evidence seeking to display argon as a potential neuroprotective agent. The high availability and low cost of argon provide a distinct advantage over using similarly acting treatments such as xenon gas. Argon gas treatments in models of brain injury such as in vitro Oxygen-Glucose-Deprivation (OGD) and Traumatic Brain Injury (TBI), as well as in vivo Middle Cerebral Artery Occlusion (MCAO) have largely demonstrated positive neuroprotective behavior. On the other hand, some warning has been made to potential negative effects of argon treatments in cases of ischemic brain injury, where increases of damage in the sub-cortical region of the brain have been uncovered. Further support for argon use in the medical field has been demonstrated in its use in combination with tPA, its ability as an organoprotectant, and its surgical applications. This review seeks to summarize the history and development of argon gas use in medical research as mainly a neuroprotective agent, to summarize the mechanisms associated with its biological effects, and to elucidate its future potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA