Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasitol Int ; 79: 102160, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32574727

RESUMO

Members of the mitochondrial carrier (MC) family of membrane transporters play important roles in cellular metabolism. We previously established an in vitro reconstitution system for membrane transporters based on wheat germ cell-free translation system. We have now applied this reconstitution system to the comparative analysis of MC proteins from the malaria parasite Plasmodium falciparum and Saccharomyces cerevisiae. We synthesized twelve putative P. falciparum MCs and determined the transport activities of four of these proteins including PF3D7_1037300 protein (ADP/ATP translocator), PF3D7_1004800 protein (ADP/ATP translocator), PF3D7_1202200 protein (phosphate carrier), and PF3D7_1241600 protein (S-adenosylmethionine transporter). In addition, we tested the effect of cardiolipin on the activity of MC proteins. The transport activities of the yeast MCs, ScAac2p, ScGgc1p, ScDic1p, ScPic1p, and ScSam5p, which localize to the mitochondrial inner membrane, were increased by cardiolipin supplementation, whereas that of ScAnt1p, which localizes to the peroxisome membrane, was not significantly affected. Together, this indicates that the functional properties of the reconstituted MCs reflect the lipid content of their native membranes. Except for PF3D7_1241600 protein, these P. falciparum proteins manifested cardiolipin-dependent transport activities. Immunofluorescence analysis showed that PF3D7_1241600 protein is not mainly localized to the mitochondria of P. falciparum cells. We thus revealed the functions of four MC proteins of the malaria parasite and the effects of cardiolipin on their activities.


Assuntos
Proteínas de Transporte/genética , Proteínas Mitocondriais/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Transporte/metabolismo , Proteínas Mitocondriais/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo
2.
Biochim Biophys Acta ; 1863(11): 2766-2783, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27566292

RESUMO

Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8) has been investigated in molecular and biochemical detail, the physiological role of CASP8 is not fully understood. Here, we identified a two-pore domain potassium channel, tandem-pore domain halothane-inhibited K+ channel 1 (THIK-1), as a novel CASP8 substrate. The intracellular region of THIK-1 was cleaved by CASP8 in apoptotic cells. Overexpression of THIK-1, but not its mutant lacking the CASP8-target sequence in the intracellular portion, accelerated cell shrinkage in response to apoptotic stimuli. In contrast, knockdown of endogenous THIK-1 by RNA interference resulted in delayed shrinkage and potassium efflux. Furthermore, a truncated THIK-1 mutant lacking the intracellular region, which mimics the form cleaved by CASP8, led to a decrease of cell volume of cultured cells without apoptotic stimulation and excessively promoted irregular development of Xenopus embryos. Taken together, these results indicate that THIK-1 is involved in the acceleration of cell shrinkage. Thus, we have demonstrated a novel physiological role of CASP8: creating a cascade that advances the cell to the next stage in the apoptotic process.


Assuntos
Caspase 8/metabolismo , Tamanho Celular , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Apoptose , Células COS , Caspase 8/genética , Chlorocebus aethiops , Ativação Enzimática , Células HeLa , Humanos , Células MCF-7 , Mutação , Canais de Potássio de Domínios Poros em Tandem/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Especificidade por Substrato , Fatores de Tempo , Transfecção , Xenopus laevis
3.
Eukaryot Cell ; 14(11): 1144-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385892

RESUMO

Entamoeba histolytica, a microaerophilic protozoan parasite, possesses mitosomes. Mitosomes are mitochondrion-related organelles that have largely lost typical mitochondrial functions, such as those involved in the tricarboxylic acid cycle and oxidative phosphorylation. The biological roles of Entamoeba mitosomes have been a long-standing enigma. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. Sulfate activation cooperates with cytosolic enzymes, i.e., sulfotransferases (SULTs), for the synthesis of sulfolipids, one of which is cholesteryl sulfate. Notably, cholesteryl sulfate plays an important role in encystation, an essential process in the Entamoeba life cycle. These findings identified a biological role for Entamoeba mitosomes; however, they simultaneously raised a new issue concerning how the reactions of the pathway, separated by the mitosomal membranes, cooperate. Here, we demonstrated that the E. histolytica mitochondrial carrier family (EhMCF) has the capacity to exchange 3'-phosphoadenosine 5'-phosphosulfate (PAPS) with ATP. We also confirmed the cytosolic localization of all the E. histolytica SULTs, suggesting that in Entamoeba, PAPS, which is produced through mitosomal sulfate activation, is translocated to the cytosol and becomes a substrate for SULTs. In contrast, ATP, which is produced through cytosolic pathways, is translocated into the mitosomes and is a necessary substrate for sulfate activation. Taking our findings collectively, we suggest that EhMCF functions as a PAPS/ATP antiporter and plays a crucial role in linking the mitosomal sulfate activation pathway to cytosolic SULTs for the production of sulfolipids.


Assuntos
Trifosfato de Adenosina/metabolismo , Entamoeba histolytica/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Sulfotransferases/metabolismo , Citoplasma/metabolismo , Entamoeba histolytica/genética , Lipídeos/biossíntese , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sulfotransferases/genética
4.
J Biol Chem ; 289(22): 15631-41, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722991

RESUMO

The guanosine 3',5'-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 µM relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 µM. The IC50 of ppGpp for GKpm was ∼10 µM. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.


Assuntos
Bactérias/enzimologia , Cloroplastos/enzimologia , Guanosina Tetrafosfato/metabolismo , Guanilato Quinases/metabolismo , Ligases/metabolismo , Plantas/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bactérias/genética , Sequência de Bases , Cloroplastos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Guanilato Quinases/genética , Ligases/genética , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/genética , Pisum sativum/enzimologia , Pisum sativum/genética , Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Synechococcus/enzimologia , Synechococcus/genética
5.
J Biosci Bioeng ; 118(2): 130-3, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24656877

RESUMO

We prepared functional luciferase and membrane-integrated form of adenine nucleotide transporter (Ant1p) with a wheat germ cell-free system. The reconstituted Ant1p showed transport activity of ATP/AMP exchange across the membrane. Here we demonstrate that activity of the luciferase entrapped in the Ant1p-proteoliposomes is controllable by the external supply of ATP.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Insetos/química , Luciferases/química , Proteínas de Transporte de Nucleotídeos/química , Proteínas de Saccharomyces cerevisiae/química , Animais , Sistema Livre de Células , Besouros , Ativação Enzimática , Lipossomos , Triticum/química
6.
Plant Mol Biol ; 78(1-2): 185-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22108865

RESUMO

Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(ß,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.


Assuntos
Cloroplastos/genética , Guanosina Tetrafosfato/metabolismo , Elongação Traducional da Cadeia Peptídica/genética , Proteínas de Plantas/genética , Antibacterianos/farmacologia , Radioisótopos de Carbono , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Relação Dose-Resposta a Droga , Ácido Fusídico/farmacologia , Guanosina Difosfato/metabolismo , Guanosina Difosfato/farmacologia , Guanosina Tetrafosfato/farmacologia , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/farmacologia , Leucina/genética , Leucina/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Poli U/genética , RNA Mensageiro/genética , Tioestreptona/farmacologia
7.
Mol Microbiol ; 67(2): 291-304, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067544

RESUMO

Bacterial alarmone (p)ppGpp, is a global regulator responsible for the stringent control. Two homologous (p)ppGpp synthetases, RelA and SpoT, have been identified and characterized in Escherichia coli, whereas Gram-positive bacteria such as Bacillus subtilis have been thought to possess only a single RelA-SpoT enzyme. We have now identified two genes, yjbM and ywaC, in B. subtilis that encode a novel type of alarmone synthetase. The predicted products of these genes are relatively small proteins ( approximately 25 kDa) that correspond to the (p)ppGpp synthetase domain of RelA-SpoT family members. A database survey revealed that genes homologous to yjbM and ywaC are conserved in certain bacteria belonging to Firmicutes or Actinobacteria phyla but not in other phyla such as Proteobacteria. We designated the proteins as small alarmone synthetases (SASs) to distinguish them from RelA-SpoT proteins. The (p)ppGpp synthetase function of YjbM and YwaC was confirmed by genetic complementation analysis and by in vitro assay of enzyme activity. Molecular genetic analysis also revealed that ywaC is induced by alkaline shock, resulting in the transient accumulation of ppGpp. The SAS proteins thus likely function in the biosynthesis of alarmone with a mode of action distinct from that of RelA-SpoT homologues.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligases/genética , Ligases/metabolismo , Sequência de Aminoácidos , Arginina/análogos & derivados , Arginina/metabolismo , Bacillus subtilis/classificação , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Guanosina Tetrafosfato/biossíntese , Ligases/química , Ligases/fisiologia , Dados de Sequência Molecular , Mutação , Filogenia , Alinhamento de Sequência , Transcrição Gênica
8.
J Biol Chem ; 282(49): 35536-45, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-17938177

RESUMO

The genetic system of chloroplasts, including the machinery for transcription, translation, and DNA replication, exhibits substantial similarity to that of eubacteria. Chloroplasts are also thought to possess a system for generating guanosine 5'-triphosphate ((p)ppGpp), which triggers the stringent response in eubacteria, with genes encoding chloroplastic (p)ppGpp synthetase having been identified. We now describe the identification and characterization of genes (OsCRSH1, OsCRSH2, and OsCRSH3) for a novel type of (p)ppGpp synthetase in rice. The proteins encoded by these genes contain a putative chloroplast transit peptide at the NH(2) terminus, a central RelA-SpoT-like domain, and two EF-hand motifs at the COOH terminus. The recombinant OsCRSH1 protein was imported into chloroplasts in vitro, and genetic complementation analysis revealed that expression of OsCRSH1 suppressed the phenotype of an Escherichia coli mutant deficient in the RelA and SpoT enzymes. Biochemical analysis showed that the OsCRSH proteins possess (p)ppGpp synthetase activity that is dependent both on Ca(2+) and on the EF-hand motifs. A data base search identified a CRSH homolog in the dicotyledon Arabidopsis thaliana, indicating that such genes are conserved among both monocotyledonous and dicotyledonous land plants. CRSH proteins thus likely function as Ca(2+)-activated (p)ppGpp synthetases in plant chloroplasts, implicating both Ca(2+) and (p)ppGpp signaling in regulation of the genetic system of these organelles.


Assuntos
Cálcio/metabolismo , Cloroplastos/enzimologia , Ligases/metabolismo , Oryza/enzimologia , Pisum sativum/enzimologia , Proteínas de Plantas/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Bactérias/enzimologia , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cloroplastos/genética , Ativação Enzimática/fisiologia , Ligases/genética , Oryza/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Biossíntese de Proteínas/fisiologia , Homologia de Sequência de Aminoácidos , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA