Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biomolecules ; 14(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927010

RESUMO

Nuclear hormone receptors exist in dynamic equilibrium between transcriptionally active and inactive complexes dependent on interactions with ligands, proteins, and chromatin. The present studies examined the hypothesis that endogenous ligands activate peroxisome proliferator-activated receptor-ß/δ (PPARß/δ) in keratinocytes. The phorbol ester treatment or HRAS infection of primary keratinocytes increased fatty acids that were associated with enhanced PPARß/δ activity. Fatty acids caused PPARß/δ-dependent increases in chromatin occupancy and the expression of angiopoietin-like protein 4 (Angptl4) mRNA. Analyses demonstrated that stearoyl Co-A desaturase 1 (Scd1) mediates an increase in intracellular monounsaturated fatty acids in keratinocytes that act as PPARß/δ ligands. The activation of PPARß/δ with palmitoleic or oleic acid causes arrest at the G2/M phase of the cell cycle of HRAS-expressing keratinocytes that is not found in similarly treated HRAS-expressing Pparb/d-null keratinocytes. HRAS-expressing Scd1-null mouse keratinocytes exhibit enhanced cell proliferation, an effect that is mitigated by treatment with palmitoleic or oleic acid. Consistent with these findings, the ligand activation of PPARß/δ with GW0742 or oleic acid prevented UVB-induced non-melanoma skin carcinogenesis, an effect that required PPARß/δ. The results from these studies demonstrate that PPARß/δ has endogenous roles in keratinocytes and can be activated by lipids found in diet and cellular components.


Assuntos
Queratinócitos , PPAR delta , PPAR beta , Estearoil-CoA Dessaturase , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , PPAR beta/metabolismo , PPAR beta/genética , Animais , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , PPAR delta/metabolismo , PPAR delta/genética , Ácidos Graxos/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Humanos , Ácido Oleico/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
2.
Biochem Biophys Res Commun ; 651: 62-69, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791500

RESUMO

Obesity is a major risk factor for type 2 diabetes, coronary heart disease, and strok. These diseases are associated with profound alterations in gene expression in metabolic tissues. Epigenetic-mediated regulation of gene expression is one mechanism through which environmental factors, such as diet, modify gene expression and disease predisposition. However, epigenetic control of gene expression in obesity and insulin resistance is not fully characterized. We discovered that liver-specific stearoyl-CoA desaturase-1 (Scd1) knockout mice (LKO) fed a high-carbohydrate low-fat diet exhibit dramatic changes in hepatic gene expression and metabolites of the folate cycle and one-carbon metabolism respectively for the synthesis of S-adenosylmethionine (SAM). LKO mice show an increased ratio of S-adenosylmethionine to S-adenosylhomocysteine, a marker for increased cellular methylation capacity. Furthermore, expression of DNA and histone methyltransferase genes is up-regulated while the mRNA and protein levels of the non-DNA methyltransferases including phosphatidylethanolamine methyltransferase (PEMT), Betaine homocysteine methyltransferase (Bhmt), and the SAM-utilizing enzymes such as glycine-N-methyltransferase (Gnmt) and guanidinoacetate methyltransferase (Gamt) are generally down-regulated. Feeding LKO mice a high carbohydrate diet supplemented with triolein, but not tristearin, and increased endogenous hepatic synthesis of oleate but not palmitoleate in Scd1 global knockout mice normalized one carbon gene expression and metabolite levels. Additionally, changes in one carbon gene expression are independent of the PGC-1α-mediated ER stress response previously reported in the LKO mice. Together, these results highlight the important role of oleate in maintaining one-carbon cycle homeostasis and point to observed changes in one-carbon metabolism as a novel mediator of the Scd1 deficiency-induced liver phenotype.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Oleico , Camundongos , Animais , Ácido Oleico/metabolismo , S-Adenosilmetionina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Carboidratos , Camundongos Knockout , Obesidade/metabolismo , Carbono/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142371

RESUMO

New blood vessel formation is a key component of the cardiac repair process after myocardial infarction (MI). Hypoxia following MI is a major driver of angiogenesis in the myocardium. Hypoxia-inducible factor 1α (HIF1α) is the key regulator of proangiogenic signaling. The present study found that stearoyl-CoA desaturase (SCD) significantly contributed to the induction of angiogenesis in the hypoxic myocardium independently of HIF1α expression. The pharmacological inhibition of SCD activity in HL-1 cardiomyocytes and SCD knockout in an animal model disturbed the expression and secretion of proangiogenic factors including vascular endothelial growth factor-A, proinflammatory cytokines (interleukin-1ß, interleukin-6, tumor necrosis factor α, monocyte chemoattractant protein-1, and Rantes), metalloproteinase-9, and platelet-derived growth factor in ischemic cardiomyocytes. These disturbances affected the proangiogenic potential of ischemic cardiomyocytes after SCD depletion. Together with the most abundant SCD1 isoform, the heart-specific SCD4 isoform emerged as an important regulator of new blood vessel formation in the murine post-MI myocardium. We also provide evidence that SCD shapes energy metabolism of the ischemic heart by maintaining the shift from fatty acids to glucose as the substrate that is used for adenosine triphosphate production. Furthermore, we propose that the regulation of the proangiogenic properties of hypoxic cardiomyocytes by key modulators of metabolic signaling such as adenosine monophosphate kinase, protein kinase B (AKT), and peroxisome-proliferator-activated receptor-γ coactivator 1α/peroxisome proliferator-activated receptor α depends on SCD to some extent. Thus, our results reveal a novel mechanism that links SCD to cardiac repair processes after MI.


Assuntos
Infarto do Miocárdio , Estearoil-CoA Dessaturase , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL5/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , PPAR alfa/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Hepatol Commun ; 6(10): 2937-2949, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35903850

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is defined by a set of hepatic conditions ranging from steatosis to steatohepatitis (NASH), characterized by inflammation and fibrosis, eventually predisposing to hepatocellular carcinoma (HCC). Together with fatty acids (FAs) originated from adipose lipolysis and hepatic lipogenesis, intestinal-derived FAs are major contributors of steatosis. However, the role of mono-unsaturated FAs (MUFAs) in NAFLD development is still debated. We previously established the intestinal capacity to produce MUFAs, but its consequences in hepatic functions are still unknown. Here, we aimed to determine the role of the intestinal MUFA-synthetizing enzyme stearoyl-CoA desaturase 1 (SCD1) in NAFLD. We used intestinal-specific Scd1-KO (iScd1-/- ) mice and studied hepatic dysfunction in different models of steatosis, NASH, and HCC. Intestinal-specific Scd1 deletion decreased hepatic MUFA proportion. Compared with controls, iScd1-/- mice displayed increased hepatic triglyceride accumulation and derangement in cholesterol homeostasis when fed a MUFA-deprived diet. Then, on Western diet feeding, iScd1-/- mice triggered inflammation and fibrosis compared with their wild-type littermates. Finally, intestinal-Scd1 deletion predisposed mice to liver cancer. Conclusions: Collectively, these results highlight the major importance of intestinal MUFA metabolism in maintaining hepatic functions and show that gut-derived MUFAs are protective from NASH and HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/genética , Colesterol , Dieta Ocidental , Ácidos Graxos , Ácidos Graxos Monoinsaturados/metabolismo , Fibrose , Inflamação , Neoplasias Hepáticas/genética , Camundongos , Hepatopatia Gordurosa não Alcoólica/genética , Estearoil-CoA Dessaturase/genética , Triglicerídeos/metabolismo
5.
Oxid Med Cell Longev ; 2020: 9535426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178389

RESUMO

Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.


Assuntos
Cardiotoxicidade , Celulose/química , Clerodendrum/química , Extratos Vegetais/farmacologia , Sementes/química , Trastuzumab/efeitos adversos , África , Animais , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar , Trastuzumab/farmacologia
6.
Immunometabolism ; 2(3)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528735

RESUMO

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. We review the two core MS features, myelin instability, fragmentation, and remyelination failure, and dominance of pathogenic CD4+ Th17 cells over protective CD4+ Treg cells. To better understand myelin pathology, we describe myelin biosynthesis, structure, and function, then highlight stearoyl-CoA desaturase (SCD) in nervonic acid biosynthesis and nervonic acid's contribution to myelin stability. Noting that vitamin D deficiency decreases SCD in the periphery, we propose it also decreases SCD in oligodendrocytes, disrupting the nervonic acid supply and causing myelin instability and fragmentation. To better understand the distorted Th17/Treg cell balance, we summarize Th17 cell contributions to MS pathogenesis, then highlight how 1,25-dihydroxyvitamin D3 signaling from microglia to CD4+ T cells restores Treg cell dominance. This signaling rapidly increases flux through the methionine cycle, removing homocysteine, replenishing S-adenosyl-methionine, and improving epigenetic marking. Noting that DNA hypomethylation and inappropriate DRB1*1501 expression were observed in MS patient CD4+ T cells, we propose that vitamin D deficiency thwarts epigenetic downregulation of DRB1*1501 and Th17 cell signature genes, and upregulation of Treg cell signature genes, causing dysregulation within the CD4+ T cell compartment. We explain how obesity reduces vitamin D status, and how estrogen and vitamin D collaborate to promote Treg cell dominance in females. Finally, we discuss the implications of this new knowledge concerning myelin and the Th17/Treg cell balance, and advocate for efforts to address the global epidemics of obesity and vitamin D deficiency in the expectation of reducing the impact of MS.

7.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32097464

RESUMO

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination.


Assuntos
Encéfalo/patologia , Macrófagos/enzimologia , Microglia/enzimologia , Estearoil-CoA Dessaturase/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Endocitose , Ácidos Graxos/metabolismo , Células Espumosas/metabolismo , Humanos , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/ultraestrutura , Camundongos , Microglia/metabolismo , Bainha de Mielina/metabolismo , Fagócitos/patologia , Fagócitos/ultraestrutura , Fenótipo , Proteína Quinase C-delta/metabolismo , Estearoil-CoA Dessaturase/deficiência
8.
J Cell Physiol ; 235(2): 1129-1140, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31241768

RESUMO

Stearoyl-CoA desaturase (SCD) is a rate-limiting enzyme that catalyzes the synthesis of monounsaturated fatty acids. It plays an important role in regulating skeletal muscle metabolism. Lack of the SCD1 gene increases the rate of fatty acid ß-oxidation through activation of the AMP-activated protein kinase (AMPK) pathway and the upregulation of genes that are related to fatty acid oxidation. The mechanism of AMPK activation under conditions of SCD1 deficiency has been unclear. In the present study, we found that the ablation/inhibition of SCD1 led to AMPK activation in skeletal muscle through an increase in AMP levels whereas muscle-specific SCD1 overexpression decreased both AMPK phosphorylation and the adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio. Changes in AMPK phosphorylation that were caused by SCD1 down- and upregulation affected NAD+ levels following changes in NAD+ -dependent deacetylase sirtuin-1 (SIRT1) activity and histone 3 (H3K9) acetylation and methylation status. Moreover, mice with muscle-targeted overexpression of SCD1 were more susceptible to high-fat diet-induced lipid accumulation and the development of insulin resistance compared with wild-type mice. These data show that SCD1 is involved in nucleotide (ATP and NAD+ ) metabolism and suggest that the SCD1-dependent regulation of muscle steatosis and insulin sensitivity are mediated by cooperation between AMPK- and SIRT1-regulated pathways. Altogether, the present study reveals a novel mechanism that links SCD1 with the maintenance of metabolic homeostasis and insulin sensitivity in skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nucleotídeos de Adenina/metabolismo , Histonas/metabolismo , Músculo Esquelético/metabolismo , Sirtuína 1/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Acetilação , Animais , Linhagem Celular , Dieta Hiperlipídica , Regulação para Baixo , Regulação da Expressão Gênica , Histonas/genética , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Sirtuína 1/genética , Estearoil-CoA Dessaturase/genética
9.
Nutrients ; 11(10)2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554181

RESUMO

The consumption of an olive oil rich diet has been associated with the diminished incidence of cardiovascular disease and cancer. Several studies have attributed these beneficial effects to oleic acid (C18 n-9), the predominant fatty acid principal component of olive oil. Oleic acid is not an essential fatty acid since it can be endogenously synthesized in humans. Stearoyl-CoA desaturase 1 (SCD1) is the enzyme responsible for oleic acid production and, more generally, for the synthesis of monounsaturated fatty acids (MUFA). The saturated to monounsaturated fatty acid ratio affects the regulation of cell growth and differentiation, and alteration in this ratio has been implicated in a variety of diseases, such as liver dysfunction and intestinal inflammation. In this review, we discuss our current understanding of the impact of gene-nutrient interactions in liver and gut diseases, by taking advantage of the role of SCD1 and its product oleic acid in the modulation of different hepatic and intestinal metabolic pathways.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ácido Oleico/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Dieta , Trato Gastrointestinal/fisiologia , Humanos , Fígado/fisiologia , Ácido Oleico/biossíntese
10.
FASEB J ; 33(3): 3198-3211, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30379590

RESUMO

Growth factor receptor-binding protein 10 (GRB10) is a well-known adaptor protein and a recently identified substrate of the mammalian target of rapamycin (mTOR). Depletion of GRB10 increases insulin sensitivity and overexpression suppresses PI3K/Akt signaling. Because the major reason for the limited efficacy of PI3K/Akt-targeted therapies in prostate cancer (PCa) is loss of mTOR-regulated feedback suppression, it is therefore important to assess the functional importance and regulation of GRB10 under these conditions. On the basis of these background observations, we explored the status and functional impact of GRB10 in PCa and found maximum expression in phosphatase and tensin homolog (PTEN)-deficient PCa. In human PCa samples, GRB10 inversely correlated with PTEN and positively correlated with pAKT levels. Knockdown of GRB10 in nontumorigenic PTEN null mouse embryonic fibroblasts and tumorigenic PCa cell lines reduced Akt phosphorylation and selectively activated a panel of receptor tyrosine kinases. Similarly, overexpression of GRB10 in PTEN wild-type PCa cell lines accelerated tumorigenesis and induced Akt phosphorylation. In PTEN wild-type PCa, GRB10 overexpression promoted mediated PTEN interaction and degradation. PI3K (but not mTOR) inhibitors reduced GRB10 expression, suggesting primarily PI3K-driven regulation of GRB10. In summary, our results suggest that GRB10 acts as a major downstream effector of PI3K and has tumor-promoting effects in prostate cancer.-Khan, M. I., Al Johani, A., Hamid, A., Ateeq, B., Manzar, N., Adhami, V. M., Lall, R. K., Rath, S., Sechi, M., Siddiqui, I. A., Choudhry, H., Zamzami, M. A., Havighurst, T. C., Huang, W., Ntambi, J. M., Mukhtar, H. Proproliferatve function of adaptor protein GRB10 in prostate carcinoma.


Assuntos
Proteína Adaptadora GRB10/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Carcinógenos/antagonistas & inibidores , Carcinógenos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Proliferação de Células/fisiologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteína Adaptadora GRB10/antagonistas & inibidores , Proteína Adaptadora GRB10/genética , Técnicas de Silenciamento de Genes , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Modelos Biológicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro , Transdução de Sinais
11.
Biochem Biophys Res Commun ; 508(1): 87-91, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470572

RESUMO

Stearoyl-CoA desaturase 1 (SCD1), a lipogenic enzyme that adds a double bond at the delta 9 position of stearate (C18: 0) and palmitate (C16: 0), has been proven to be important in the development of obesity. Mice with skin-specific deficiency of SCD1 (SKO) display increased whole-body energy expenditure, which is protective against adiposity from a high-fat diet because it improves glucose clearance, insulin sensitivity, and hepatic steatosis. Of note, these mice also display elevated levels of the "pro-inflammatory" plasma interleukin-6 (IL-6). In whole skin of SKO mice, IL-6 mRNA levels are increased, and protein expression is evident in hair follicle cells and in keratinocytes. Recently, the well-known role of IL-6 in causing white adipose tissue lipolysis has been linked to indirectly activating the gluconeogenic enzyme pyruvate carboxylase 1 in the liver, thereby increasing hepatic glucose production. In this study, we suggest that skin-derived IL-6 leads to white adipose tissue lipolysis, which contributes to the lean phenotype of SKO mice without the incidence of meta-inflammation that is associated with IL-6 signaling.


Assuntos
Interleucina-6/metabolismo , Pele/metabolismo , Estearoil-CoA Dessaturase/deficiência , Tecido Adiposo Branco/metabolismo , Adiposidade , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Gluconeogênese , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Interleucina-6/genética , Queratinócitos/metabolismo , Lipólise , Fígado/metabolismo , Macrófagos/citologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pele/citologia , Estearoil-CoA Dessaturase/genética , Magreza/genética , Magreza/metabolismo , Distribuição Tecidual
12.
J Cell Signal ; 3(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30474082

RESUMO

The obesity epidemic is a costly public health crisis that is not improving. In addition to the stigma and discomfort associated with carrying extra weight (at the expense of range of movement), obesity also goes hand-in-hand with co-morbidities like fatty liver disease, diabetes, cardiovascular disease, and increased risk of some forms of cancer. Currently there are no long-lasting treatments for obesity other than diet and exercise, which are not feasible for many populations that may not be equipped with the resources and/or support needed to lead a healthy lifestyle. Although there have been some pharmacological breakthroughs for treating obesity, each FDA-approved drug comes with unpleasant side-effects that make adherence unlikely. As a result, alternate approaches are necessary. In this review, we outline the relationship between skin lipid metabolism and whole-body glucose and lipid metabolism. Specifically, by summarizing studies that employed mice that were genetically modified to interrupt lipid metabolism in the skin. As a result, we propose that skin might be an overlooked, but viable target for combating obesity.

13.
Gastroenterology ; 155(5): 1524-1538.e9, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063922

RESUMO

BACKGROUND & AIMS: The enzyme stearoyl-coenzyme A desaturase 1 (SCD or SCD1) produces monounsaturated fatty acids by introducing double bonds into saturated bonds between carbons 9 and 10, with oleic acid as the main product. SCD1 is present in the intestinal epithelium, and fatty acids regulate cell proliferation, so we investigated the effects of SCD1-induced production of oleic acid in enterocytes in mice. METHODS: We generated mice with disruption of Scd1 selectively in the intestinal epithelium (iScd1-/- mice) on a C57BL/6 background; iScd1+/+ mice were used as controls. We also generated iScd1-/-ApcMin/+ mice and studied cancer susceptibility. Mice were fed a chow, oleic acid-deficient, or oleic acid-rich diet. Intestinal tissues were collected and analyzed by histology, reverse transcription quantitative polymerase chain reaction, immunohistochemistry, and mass spectrometry, and tumors were quantified and measured. RESULTS: Compared with control mice, the ileal mucosa of iScd1-/- mice had a lower proportion of palmitoleic (C16:1 n-7) and oleic acids (C18:1 n-9), with accumulation of stearic acid (C18:0); this resulted a reduction of the Δ9 desaturation ratio between monounsaturated (C16:1 n-7 and C18:1 n-9) and saturated (C16:0 and C18:0) fatty acids. Ileal tissues from iScd1-/- mice had increased expression of markers of inflammation activation and crypt proliferative genes compared with control mice. The iScd1-/-ApcMin/+ mice developed more and larger tumors than iScd1+/+ApcMin/+ mice. iScd1-/-ApcMin/+ mice fed the oleic acid-rich diet had reduced intestinal inflammation and significantly lower tumor burden compared with mice fed a chow diet. CONCLUSIONS: In studies of mice, we found intestinal SCD1 to be required for synthesis of oleate in the enterocytes and maintenance of fatty acid homeostasis. Dietary supplementation with oleic acid reduces intestinal inflammation and tumor development in mice.


Assuntos
Gorduras Insaturadas na Dieta/administração & dosagem , Enterite/etiologia , Mucosa Intestinal/enzimologia , Neoplasias Intestinais/etiologia , Ácido Oleico/administração & dosagem , Estearoil-CoA Dessaturase/fisiologia , Animais , Feminino , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Oleico/metabolismo , Carga Tumoral
14.
J Biol Chem ; 292(49): 19987-19988, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222194

RESUMO

Δ9-Desaturases are central enzymes in unsaturated fatty acid synthesis regulated at the transcriptional and mRNA levels and by proteasomal degradation. A new study by Murakami et al. uncovers a novel regulatory pathway in which an N-terminal di-proline motif in the Drosophila Δ9-desaturase mediates protein degradation by a calcium-dependent cysteine protease in response to unsaturated fatty acids. This study provides new details of desaturase regulation with therapeutic implications for the treatment of metabolic syndrome.


Assuntos
Drosophila , Ácidos Graxos Dessaturases , Animais , Ácidos Graxos , Prolina , Estearoil-CoA Dessaturase
15.
Am J Physiol Endocrinol Metab ; 313(6): E710-E720, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851735

RESUMO

Stearoyl-CoA desaturase-1 (SCD1) is a key player in lipid metabolism. SCD1 catalyzes the synthesis of monounsaturated fatty acids (MUFA). MUFA are then incorporated into triacylglycerols and phospholipids. Previous studies have shown that Scd1 deficiency in mice induces metabolic changes in the liver characterized by a decrease in de novo lipogenesis and an increase in ß-oxidation. Interestingly, Scd1-deficient mice show a decrease in the expression and maturation of the principal lipogenic transcription factor sterol receptor element binding protein-1 (SREBP-1). The mechanisms mediating this effect on de novo lipogenesis and ß-oxidation have not been fully elucidated. We evaluated the role of SCD1 on de novo lipogenesis and ß-oxidation in HepG2 cells. We also used Scd1-deficient mice and two strains of transgenic mice that produce either oleate (GLS5) or palmitoleate (GLS3) in a liver-specific manner. We demonstrate that the expression of ß-oxidation markers increases in SCD1-deficient hepatocytes and suggest that this is due to an increase in cellular polyunsaturated fatty acid content. We also show that the changes in the level of SREBP-1 expression, for both the precursor and the mature forms, are mainly due to the lack of oleate in SCD1-deficient hepatocytes. Indeed, oleate treatment of cultured HepG2 cells or hepatic oleate production in chow-fed GLS5 mice can restore SREBP-1 expression and increase hepatic de novo lipogenesis. Finally, we show that oleate specifically increases SREBP-1 nuclear accumulation, suggesting a central role for oleate in SREBP-1 signaling activity.


Assuntos
Hepatócitos/efeitos dos fármacos , Ácido Oleico/farmacologia , Estearoil-CoA Dessaturase/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
16.
Ann Glob Health ; 83(2): 311-319, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28619406

RESUMO

BACKGROUND: Uganda is experiencing a dual burden of over- and undernutrition, with overweight prevalence increasing while underweight remains common. Potential weight-related factors, particularly physical activity, sleep, and rural/urban status, are not currently well understood or commonly assessed in Ugandan youth. OBJECTIVE: The purpose of this study was to pilot test a survey measuring weight-related factors in rural and urban Ugandan schoolchildren. METHODS: A cross-sectional survey measured sociodemographics, physical activity, sleep patterns, and dietary factors in 148 rural and urban schoolchildren aged 11-16 in central Uganda. Height and weight were objectively measured. Rural and urban youth were compared on these factors using χ2 and t tests. Regression was used to identify correlates of higher body mass index (BMI) percentile in the full sample and nonstunted youth. FINDINGS: Youth were on average 12.1 ± 1.1 years old; underweight (10%) was more common than overweight (1.4%). Self-reported sleep duration and subjective sleep quality did not differ by rural/urban residence. Rural children overall had higher BMI percentile and marginally higher stunting prevalence. In adjusted analyses in both the full and nonstunted samples, higher BMI percentile was related to living in a rural area, higher frequency of physical activity, and higher subjective sleep quality; it was negatively related to being active on weekends. In the full sample, higher BMI percentile was also related to female gender, whereas in nonstunted youth, higher BMI was related to age. BMI percentile was unrelated to sedentary time, performance of active chores and sports, and dietary factors. CONCLUSIONS: This study is one of the first to pilot test a survey assessing weight-related factors, particularly physical activity and sleep, in Ugandan schoolchildren. BMI percentile was related to several sociodemographic, sleep, and physical activity factors among primarily normal-weight school children in Uganda, providing a basis for understanding weight status in the context of the nutrition transition.


Assuntos
Índice de Massa Corporal , Exercício Físico , População Rural , Sono/fisiologia , População Urbana , Adolescente , Estudos Transversais , Feminino , Humanos , Obesidade/etnologia , Características de Residência , População Rural/estatística & dados numéricos , Uganda/epidemiologia , População Urbana/estatística & dados numéricos
17.
Gastroenterology ; 152(6): 1477-1491, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28143772

RESUMO

BACKGROUND & AIMS: Stearoyl-CoA desaturase (SCD) synthesizes monounsaturated fatty acids (MUFAs) and has been associated with the development of metabolic syndrome, tumorigenesis, and stem cell characteristics. We investigated whether and how SCD promotes liver fibrosis and tumor development in mice. METHODS: Rodent primary hepatic stellate cells (HSCs), mouse liver tumor-initiating stem cell-like cells (TICs), and human hepatocellular carcinoma (HCC) cell lines were exposed to Wnt signaling inhibitors and changes in gene expression patterns were analyzed. We assessed the functions of SCD by pharmacologic and conditional genetic manipulation in mice with hepatotoxic or cholestatic induction of liver fibrosis, orthotopic transplants of TICs, or liver tumors induced by administration of diethyl nitrosamine. We performed bioinformatic analyses of SCD expression in HCC vs nontumor liver samples collected from patients, and correlated levels with HCC stage and patient mortality. We performed nano-bead pull-down assays, liquid chromatography-mass spectrometry, computational modeling, and ribonucleoprotein immunoprecipitation analyses to identify MUFA-interacting proteins. We examined the effects of SCD inhibition on Wnt signaling, including the expression and stability of low-density lipoprotein-receptor-related proteins 5 and 6 (LRP5 and LRP6), by immunoblot and quantitative polymerase chain reaction analyses. RESULTS: SCD was overexpressed in activated HSC and HCC cells from patients; levels of SCD messenger RNA (mRNA) correlated with HCC stage and patient survival time. In rodent HSCs and TICs, the Wnt effector ß-catenin increased sterol regulatory element binding protein 1-dependent transcription of Scd, and ß-catenin in return was stabilized by MUFAs generated by SCD. This loop required MUFA inhibition of binding of Ras-related nuclear protein 1 (Ran1) to transportin 1 and reduced nuclear import of elav-like protein 1 (HuR), increasing cytosolic levels of HuR and HuR-mediated stabilization of mRNAs encoding LRP5 and LRP6. Genetic disruption of Scd and pharmacologic inhibitors of SCD reduced HSC activation and TIC self-renewal and attenuated liver fibrosis and tumorigenesis in mice. Conditional disruption of Scd2 in activated HSCs prevented growth of tumors from TICs and reduced the formation of diethyl nitrosamine-induced liver tumors in mice. CONCLUSIONS: In rodent HSCs and TICs, we found SCD expression to be regulated by Wnt-ß-catenin signaling, and MUFAs produced by SCD provided a forward loop to amplify Wnt signaling via stabilization of Lrp5 and Lrp6 mRNAs, contributing to liver fibrosis and tumor growth. SCD expressed by HSCs promoted liver tumor development in mice. Components of the identified loop linking HSCs and TICs might be therapeutic targets for liver fibrosis and tumors.


Assuntos
Carcinoma Hepatocelular/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Via de Sinalização Wnt/genética , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Colestase/complicações , Dietilnitrosamina , Proteína Semelhante a ELAV 1/metabolismo , Células Estreladas do Fígado , Humanos , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Camundongos , Estadiamento de Neoplasias , Transplante de Neoplasias , Células-Tronco Neoplásicas , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Taxa de Sobrevida , Transcrição Gênica , beta Catenina/metabolismo , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
18.
Aging Cell ; 16(3): 497-507, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28156058

RESUMO

Adipose tissue expansion has been associated with system-wide metabolic dysfunction and increased vulnerability to diabetes, cancer, and cardiovascular disease. A reduction in adiposity is a hallmark of caloric restriction (CR), an intervention that extends longevity and delays the onset of these same age-related conditions. Despite these parallels, the role of adipose tissue in coordinating the metabolism of aging is poorly defined. Here, we show that adipose tissue metabolism and secretory profiles change with age and are responsive to CR. We conducted a cross-sectional study of CR in adult, late-middle-aged, and advanced-aged mice. Adiposity and the relationship between adiposity and circulating levels of the adipose-derived peptide hormone adiponectin were age-sensitive. CR impacted adiposity but only levels of the high molecular weight isoform of adiponectin responded to CR. Activators of metabolism including PGC-1a, SIRT1, and NAMPT were differentially expressed with CR in adipose tissues. Although age had a significant impact on NAD metabolism, as detected by biochemical assay and multiphoton imaging, the impact of CR was subtle and related to differences in reliance on oxidative metabolism. The impact of age on circulating lipids was limited to composition of circulating phospholipids. In contrast, the impact of CR was detected in all lipid classes regardless of age, suggesting a profound difference in lipid metabolism. These data demonstrate that aspects of adipose tissue metabolism are life phase specific and that CR is associated with a distinct metabolic state, suggesting that adipose tissue signaling presents a suitable target for interventions to delay aging.


Assuntos
Adiponectina/genética , Tecido Adiposo/metabolismo , Adiposidade/genética , Envelhecimento/metabolismo , Restrição Calórica , Lipídeos/sangue , Adiponectina/metabolismo , Animais , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lipídeos/classificação , Masculino , Camundongos , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
19.
Biochim Biophys Acta ; 1861(12 Pt A): 2029-2037, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27751891

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) has recently been shown to be a critical control point in the regulation of cardiac metabolism and function. Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of myocardial fatty acid uptake and utilization. The present study used SCD1 and PPARα double knockout (SCD1-/-/PPARα-/-) mice to test the hypothesis that PPARα is involved in metabolic changes in the heart that are caused by SCD1 downregulation/inhibition. SCD1 deficiency decreased the intracellular content of free fatty acids, triglycerides, and ceramide in the heart of SCD1-/- and SCD1-/-/PPARα-/- mice. SCD1 ablation in PPARα-/- mice decreased diacylglycerol content in cardiomyocytes. These results indicate that the reduction of fat accumulation in the heart associated with SCD1 deficiency occurs independently of the PPARα pathway. To elucidate the mechanism of the observed changes, we treated HL-1 cardiomyocytes with the SCD1 inhibitor A939572 and/or PPARα inhibitor GW6471. SCD1 inhibition decreased the level of lipogenic proteins and increased lipolysis, reflected by a decrease in the content of adipose triglyceride lipase inhibitor G0S2 and a decrease in the ratio of phosphorylated hormone-sensitive lipase (HSL) at Ser565 to HSL (pHSL[Ser565]/HSL). PPARα inhibition alone did not affect the aforementioned protein levels. Finally, PPARα inhibition decreased the phosphorylation level of 5'-adenosine monophosphate-activated protein kinase, indicating lower mitochondrial fatty acid oxidation. In summary, SCD1 ablation/inhibition decreased cardiac lipid content independently of the action of PPARα by reducing lipogenesis and activating lipolysis. The present data suggest that SCD1 is an important component in maintaining proper cardiac lipid metabolism.


Assuntos
Coração/fisiologia , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipólise/fisiologia , PPAR gama/metabolismo , Estearoil-CoA Dessaturase/deficiência , Monofosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Ceramidas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipogênese/fisiologia , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Oxirredução , Fosforilação/fisiologia , Triglicerídeos/metabolismo
20.
Biochim Biophys Acta ; 1861(11): 1662-1670, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27477676

RESUMO

Stearoyl-CoA desaturase 1 (SCD1) is a delta-9 fatty acid desaturase that catalyzes the synthesis of mono-unsaturated fatty acids (MUFA). SCD1 is a critical control point regulating hepatic lipid synthesis and ß-oxidation. Scd1 KO mice are resistant to the development of diet-induced non-alcoholic fatty liver disease (NAFLD). Using a chronic-binge protocol of ethanol-mediated liver injury, we aimed to determine if these KO mice are also resistant to the development of alcoholic fatty liver disease (AFLD). Mice fed a low-fat diet (especially low in MUFA) containing 5% ethanol for 10days, followed by a single ethanol (5g/kg) gavage, developed severe liver injury manifesting as hepatic steatosis. This was associated with an increase in de novo lipogenesis and inflammation. Using this model, we show that Scd1 KO mice are resistant to the development of AFLD. Scd1 KO mice do not show accumulation of hepatic triglycerides, activation of de novo lipogenesis nor elevation of cytokines or other pro-inflammatory markers. Incubating HepG2 cells with a SCD1 inhibitor induced a similar resistance to the effect of ethanol, confirming a role for SCD1 activity in mediating ethanol-induced hepatic injury. Taken together, our study shows that SCD1 is a key player in the development of AFLD and associated deleterious effects, and suggests SCD1 inhibition as a therapeutic option for the treatment of this hepatic disease.


Assuntos
Fígado/enzimologia , Fígado/lesões , Substâncias Protetoras/metabolismo , Estearoil-CoA Dessaturase/deficiência , Animais , Composição Corporal , Dieta , Etanol , Ácidos Graxos/análise , Fígado Gorduroso Alcoólico/complicações , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Comportamento Alimentar , Deleção de Genes , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/patologia , Lipogênese/genética , Fígado/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Oxirredução , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA