Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
EMBO J ; 43(8): 1545-1569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485816

RESUMO

Adaptation to chronic hypoxia occurs through changes in protein expression, which are controlled by hypoxia-inducible factor 1α (HIF1α) and are necessary for cancer cell survival. However, the mechanisms that enable cancer cells to adapt in early hypoxia, before the HIF1α-mediated transcription programme is fully established, remain poorly understood. Here we show in human breast cancer cells, that within 3 h of hypoxia exposure, glycolytic flux increases in a HIF1α-independent manner but is limited by NAD+ availability. Glycolytic ATP maintenance and cell survival in early hypoxia rely on reserve lactate dehydrogenase A capacity as well as the activity of glutamate-oxoglutarate transaminase 1 (GOT1), an enzyme that fuels malate dehydrogenase 1 (MDH1)-derived NAD+. In addition, GOT1 maintains low α-ketoglutarate levels, thereby limiting prolyl hydroxylase activity to promote HIF1α stabilisation in early hypoxia and enable robust HIF1α target gene expression in later hypoxia. Our findings reveal that, in normoxia, multiple enzyme systems maintain cells in a primed state ready to support increased glycolysis and HIF1α stabilisation upon oxygen limitation, until other adaptive processes that require more time are fully established.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias , Humanos , Sobrevivência Celular , Glicólise/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , NAD
2.
iScience ; 26(2): 106040, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36844450

RESUMO

Dietary nutrient availability and gene expression, together, influence tissue metabolic activity. Here, we explore whether altering dietary nutrient composition in the context of mouse liver cancer suffices to overcome chronic gene expression changes that arise from tumorigenesis and western-style diet (WD). We construct a mouse genome-scale metabolic model and estimate metabolic fluxes in liver tumors and non-tumoral tissue after computationally varying the composition of input diet. This approach, called Systematic Diet Composition Swap (SyDiCoS), revealed that, compared to a control diet, WD increases production of glycerol and succinate irrespective of specific tissue gene expression patterns. Conversely, differences in fatty acid utilization pathways between tumor and non-tumor liver are amplified with WD by both dietary carbohydrates and lipids together. Our data suggest that combined dietary component modifications may be required to normalize the distinctive metabolic patterns that underlie selective targeting of tumor metabolism.

3.
Commun Biol ; 5(1): 877, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028752

RESUMO

α-ketoglutarate (αKG) is a central metabolic node with a broad influence on cellular physiology. The αKG analogue N-oxalylglycine (NOG) and its membrane-permeable pro-drug derivative dimethyl-oxalylglycine (DMOG) have been extensively used as tools to study prolyl hydroxylases (PHDs) and other αKG-dependent processes. In cell culture media, DMOG is rapidly converted to MOG, which enters cells through monocarboxylate transporter MCT2, leading to intracellular NOG concentrations that are sufficiently high to inhibit glutaminolysis enzymes and cause cytotoxicity. Therefore, the degree of (D)MOG instability together with MCT2 expression levels determine the intracellular targets NOG engages with and, ultimately, its effects on cell viability. Here we designed and characterised a series of MOG analogues with the aims of improving compound stability and exploring the functional requirements for interaction with MCT2, a relatively understudied member of the SLC16 family. We report MOG analogues that maintain ability to enter cells via MCT2, and identify compounds that do not inhibit glutaminolysis or cause cytotoxicity but can still inhibit PHDs. We use these analogues to show that, under our experimental conditions, glutaminolysis-induced activation of mTORC1 can be uncoupled from PHD activity. Therefore, these new compounds can help deconvolute cellular effects that result from the polypharmacological action of NOG.


Assuntos
Aminoácidos Dicarboxílicos , Ácidos Cetoglutáricos , Biologia , Alvo Mecanístico do Complexo 1 de Rapamicina
4.
Bioprocess Biosyst Eng ; 44(4): 809-818, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389167

RESUMO

The lipolytic yeast Yarrowia lipolytica produces cell-wall-associated lipases, namely Lip7p and Lip8p, that could have interesting properties as catalyst either in free (released lipase fraction-RLF) or cell-associated (cell-bound lipase fraction-CBLF) forms. Herein, a mixture of waste soybean frying oil, yeast extract and bactopeptone was found to favor the enzyme production. Best parameters for lipase activation and release from the cell wall by means of acoustic wave treatment were defined as: 26 W/cm2 for 1 min for CBLF and 52 W/cm2 for 2 min for RLF. Optimal pH and temperature values for lipase activity together with storage conditions were similar for both the free enzyme and cell-associated one: pH 7.0; T = 37 °C; and > 70% residual activity for 60 days at 4, - 4 °C and for 15 days at 30 °C.


Assuntos
Parede Celular/enzimologia , Microbiologia Industrial/métodos , Lipase/química , Óleo de Soja/química , Eliminação de Resíduos Líquidos/métodos , Yarrowia/enzimologia , Concentração de Íons de Hidrogênio , Ácido Oleico/química , Peptonas/química , Glycine max , Especificidade por Substrato , Temperatura , Fatores de Tempo , Ultrassom
5.
Nat Chem Biol ; 14(11): 1032-1042, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297875

RESUMO

α-Ketoglutarate (αKG) is a key node in many important metabolic pathways. The αKG analog N-oxalylglycine (NOG) and its cell-permeable prodrug dimethyloxalylglycine (DMOG) are extensively used to inhibit αKG-dependent dioxygenases. However, whether NOG interference with other αKG-dependent processes contributes to its mode of action remains poorly understood. Here we show that, in aqueous solutions, DMOG is rapidly hydrolyzed, yielding methyloxalylglycine (MOG). MOG elicits cytotoxicity in a manner that depends on its transport by monocarboxylate transporter 2 (MCT2) and is associated with decreased glutamine-derived tricarboxylic acid-cycle flux, suppressed mitochondrial respiration and decreased ATP production. MCT2-facilitated entry of MOG into cells leads to sufficiently high concentrations of NOG to inhibit multiple enzymes in glutamine metabolism, including glutamate dehydrogenase. These findings reveal that MCT2 dictates the mode of action of NOG by determining its intracellular concentration and have important implications for the use of (D)MOG in studying αKG-dependent signaling and metabolism.


Assuntos
Aminoácidos Dicarboxílicos/química , Ácidos Cetoglutáricos/química , Transportadores de Ácidos Monocarboxílicos/metabolismo , Trifosfato de Adenosina/química , Animais , Fenômenos Bioquímicos , Bovinos , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Perfilação da Expressão Gênica , Glutamina/metabolismo , Humanos , Hidrólise , Concentração Inibidora 50 , Células MCF-7 , Metabolômica , Camundongos , Mitocôndrias/metabolismo , Oxigênio/química , Puromicina/química , Transdução de Sinais , Ácidos Tricarboxílicos/química
6.
FASEB J ; 28(5): 1988-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24500922

RESUMO

Fructose consumption has been associated with the surge in obesity and dyslipidemia. This may be mediated by the fructose effects on hepatic lipids and ATP levels. Fructose metabolism provides carbons for de novo lipogenesis (DNL) and stimulates enterocyte secretion of apoB48. Thus, fructose-induced hepatic triglyceride (HTG) accumulation can be attributed to both DNL stimulation and dietary lipid absorption. The aim of this study was to assess the effects of fructose diet on HTG and ATP content and the contributions of dietary lipids and DNL to HTG. Measurements were performed in vivo in mice by magnetic resonance imaging (MRI) and novel magnetic resonance spectroscopy (MRS) approaches. Abdominal adipose tissue volume and intramyocellular lipid levels were comparable between 8-wk fructose- and glucose-fed mice. HTG levels were ∼1.5-fold higher in fructose-fed than in glucose-fed mice (P<0.05). Metabolic flux analysis by (13)C and (2)H MRS showed that this was not due to dietary lipid absorption, but due to DNL stimulation. The contribution of oral lipids to HTG was, after 5 h, 1.60 ± 0.23% for fructose and 2.16 ± 0.35% for glucose diets (P=0.26), whereas that of DNL was higher in fructose than in glucose diets (2.55±0.51 vs.1.13±0.24%, P=0.01). Hepatic energy status, assessed by (31)P MRS, was similar for fructose- and glucose-fed mice. Fructose-induced HTG accumulation is better explained by DNL and not by dietary lipid uptake, while not compromising ATP homeostasis.


Assuntos
Gorduras na Dieta/metabolismo , Frutose/administração & dosagem , Glucose/administração & dosagem , Fígado/metabolismo , Triglicerídeos/metabolismo , Absorção , Trifosfato de Adenosina/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Dieta , Enterócitos/metabolismo , Lipogênese , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA