Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473821

RESUMO

Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP-RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.


Assuntos
Adenocarcinoma , Antineoplásicos , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Desenvolvimento de Medicamentos
2.
J Am Chem Soc ; 145(37): 20302-20310, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37682266

RESUMO

Ras GTPases play a crucial role in cell signaling pathways. Mutations of the Ras gene occur in about one third of cancerous cell lines and are often associated with detrimental clinical prognosis. Hot spot residues Gly12, Gly13, and Gln61 cover 97% of oncogenic mutations, which impair the enzymatic activity in Ras. Using QM/MM free energy calculations, we present a two-step mechanism for the GTP hydrolysis catalyzed by the wild-type Ras.GAP complex. We found that the deprotonation of the catalytic water takes place via the Gln61 as a transient Brønsted base. We also determined the reaction profiles for key oncogenic Ras mutants G12D and G12C using QM/MM minimizations, matching the experimentally observed loss of catalytic activity, thereby validating our reaction mechanism. Using the optimized reaction paths, we devised a fast and accurate procedure to design GAP mutants that activate G12D Ras. We replaced GAP residues near the active site and determined the activation barrier for 190 single mutants. We furthermore built a machine learning for ultrafast screening, by fast prediction of the barrier heights, tested both on the single and double mutations. This work demonstrates that fast and accurate screening can be accomplished via QM/MM reaction path optimizations to design protein sequences with increased catalytic activity. Several GAP mutations are predicted to re-enable catalysis in oncogenic G12D, offering a promising avenue to overcome aberrant Ras-driven signal transduction by activating enzymatic activity instead of inhibition. The outlined computational screening protocol is readily applicable for designing ligands and cofactors analogously.


Assuntos
Genes ras , Proteínas ras , Proteínas ras/genética , Sequência de Aminoácidos , Catálise , Hidrólise
3.
Eur J Med Chem ; 250: 115212, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842271

RESUMO

G12C mutant KRas is considered druggable by allele-specific covalent inhibitors due to the nucleophilic character of the oncogenic mutant cysteine at position 12. Discovery of these inhibitors requires the optimization of both covalent and noncovalent interactions. Here, we report covalent fragment screening of our electrophilic fragment library of diverse non-covalent scaffolds equipped with 40 different electrophilic functionalities to identify fragments as suitable starting points targeting Cys12. Screening the library against KRasG12C using Ellman's free thiol assay, followed by protein NMR and cell viability assays, resulted in two potential inhibitor chemotypes. Characterization of these scaffolds in in vitro cellular- and in vivo xenograft models revealed them as promising starting points for covalent drug discovery programs.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética
5.
Sci Rep ; 11(1): 19197, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584184

RESUMO

Recently it was proposed that the redox status of cysteines acts as a redox switch to regulate both the oligomeric status and the activity of human dUTPase. In a separate report, a human dUTPase point mutation, resulting in a tyrosine to cysteine substitution (Y54C) was identified as the monogenic cause of a rare syndrome associated with diabetes and bone marrow failure. These issues prompt a critical investigation about the potential regulatory role of cysteines in the enzyme. Here we show on the one hand that independently of the redox status of wild-type cysteines, human dUTPase retains its characteristic trimeric assembly and its catalytic activity. On the other hand, the Y54C mutation did not compromise the substrate binding and the catalytic properties of the enzyme at room temperature. The thermal stability of the mutant protein was found to be decreased, which resulted in the loss of 67% of its activity after 90 min incubation at the physiological temperature in contrast to the wild-type enzyme. In addition, the presence or absence of reducing agents had no effect on hDUTY54C activity and stability, although it was confirmed that the introduced cysteine contains a solvent accessible thiol group.


Assuntos
Diabetes Mellitus/genética , Pirofosfatases/genética , Substituição de Aminoácidos , Clonagem Molecular , Cristalografia por Raios X , Cisteína/genética , Cisteína/metabolismo , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Mutação Puntual , Estabilidade Proteica , Pirofosfatases/isolamento & purificação , Pirofosfatases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Tirosina/genética
6.
Chembiochem ; 22(4): 743-753, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33030752

RESUMO

Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Cisteína/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteoma/análise , Proteoma/metabolismo , Cisteína/metabolismo , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/química
7.
Cancer Metastasis Rev ; 39(4): 1091-1105, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32715349

RESUMO

As a member of small GTPase family, KRAS protein is a key physiological modulator of various cellular activities including proliferation. However, mutations of KRAS present in numerous cancer types, most frequently in pancreatic (> 60%), colorectal (> 40%), and lung cancers, drive oncogenic processes through overactivation of proliferation. The G12C mutation of KRAS protein is especially abundant in the case of these types of malignancies. Despite its key importance in human disease, KRAS was assumed to be non-druggable for a long time since the protein seemingly lacks potential drug-binding pockets except the nucleotide-binding site, which is difficult to be targeted due to the high affinity of KRAS for both GDP and GTP. Recently, a new approach broke the ice and provided evidence that upon covalent targeting of the G12C mutant KRAS, a highly dynamic pocket was revealed. This novel targeting is especially important since it serves with an inherent solution for drug selectivity. Based on these results, various structure-based drug design projects have been launched to develop selective KRAS mutant inhibitors. In addition to the covalent modification strategy mostly applicable for G12C mutation, different innovative solutions have been suggested for the other frequently occurring oncogenic G12 mutants. Here we summarize the latest advances of this field, provide perspectives for novel approaches, and highlight the special properties of KRAS, which might issue some new challenges.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Modelos Moleculares , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Relação Estrutura-Atividade
8.
Magy Onkol ; 63(4): 310-323, 2019 12 09.
Artigo em Húngaro | MEDLINE | ID: mdl-31821386

RESUMO

The RASopathy consortium was built from research groups of the Budapest University of Technology and Economics, Eötvös Loránd University, Semmelweis University and two startups: KINETO Lab Ltd. and Fototronic Ltd. The goal was to design and test novel covalent and allele-specific KRAS small molecular inhibitors. KRAS is the most frequently mutated human oncogene which was unsuccessfully targeted until recently. The consortium established G12C-expressing bacterial and human cancer cell models (homo- and heterozygous variants) of lung, colorectal and pancreatic tumors. Using covalent fragment and acrylamide warhead libraries we were able to select novel candidates of small molecular G12C-specific inhibitors which were compared to published best-in-class drug candidates.


Assuntos
Neoplasias , Alelos , Humanos , Mutação , Proteínas Proto-Oncogênicas p21(ras)
9.
Sci Rep ; 8(1): 4326, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531348

RESUMO

Human deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), essential for DNA integrity, acts as a survival factor for tumor cells and is a target for cancer chemotherapy. Here we report that the Staphylococcal repressor protein StlSaPIBov1 (Stl) forms strong complex with human dUTPase. Functional analysis reveals that this interaction results in significant reduction of both dUTPase enzymatic activity and DNA binding capability of Stl. We conducted structural studies to understand the mechanism of this mutual inhibition. Small-angle X-ray scattering (SAXS) complemented with hydrogen-deuterium exchange mass spectrometry (HDX-MS) data allowed us to obtain 3D structural models comprising a trimeric dUTPase complexed with separate Stl monomers. These models thus reveal that upon dUTPase-Stl complex formation the functional homodimer of Stl repressor dissociates, which abolishes the DNA binding ability of the protein. Active site forming dUTPase segments were directly identified to be involved in the dUTPase-Stl interaction by HDX-MS, explaining the loss of dUTPase activity upon complexation. Our results provide key novel structural insights that pave the way for further applications of the first potent proteinaceous inhibitor of human dUTPase.


Assuntos
Proteínas de Bactérias/metabolismo , Pirofosfatases/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Pirofosfatases/química , Proteínas Repressoras/química , Espalhamento a Baixo Ângulo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA