Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
HGG Adv ; 5(2): 100273, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38297832

RESUMO

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 14 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism, reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated an overall milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, and some had alternative symptomatologies with rational biological links to SMC3. Analyses of tumor and model system transcriptomic data and epigenetic data in a subset of cases suggest that SMC3 pLoF variants reduce SMC3 expression but do not strongly support clustering with functional genomic signatures of typical CdLS. Our finding of substantial population-scale LoF intolerance in concert with variable growth and developmental features in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multilayered genomic data paired with careful phenotyping.


Assuntos
Síndrome de Cornélia de Lange , Deficiência Intelectual , Humanos , Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Heterozigoto , Deficiência Intelectual/genética , Mutação , Fenótipo
2.
medRxiv ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37808847

RESUMO

Heterozygous missense variants and in-frame indels in SMC3 are a cause of Cornelia de Lange syndrome (CdLS), marked by intellectual disability, growth deficiency, and dysmorphism, via an apparent dominant-negative mechanism. However, the spectrum of manifestations associated with SMC3 loss-of-function variants has not been reported, leading to hypotheses of alternative phenotypes or even developmental lethality. We used matchmaking servers, patient registries, and other resources to identify individuals with heterozygous, predicted loss-of-function (pLoF) variants in SMC3, and analyzed population databases to characterize mutational intolerance in this gene. Here, we show that SMC3 behaves as an archetypal haploinsufficient gene: it is highly constrained against pLoF variants, strongly depleted for missense variants, and pLoF variants are associated with a range of developmental phenotypes. Among 13 individuals with SMC3 pLoF variants, phenotypes were variable but coalesced on low growth parameters, developmental delay/intellectual disability, and dysmorphism reminiscent of atypical CdLS. Comparisons to individuals with SMC3 missense/in-frame indel variants demonstrated a milder presentation in pLoF carriers. Furthermore, several individuals harboring pLoF variants in SMC3 were nonpenetrant for growth, developmental, and/or dysmorphic features, some instead having intriguing symptomatologies with rational biological links to SMC3 including bone marrow failure, acute myeloid leukemia, and Coats retinal vasculopathy. Analyses of transcriptomic and epigenetic data suggest that SMC3 pLoF variants reduce SMC3 expression but do not result in a blood DNA methylation signature clustering with that of CdLS, and that the global transcriptional signature of SMC3 loss is model-dependent. Our finding of substantial population-scale LoF intolerance in concert with variable penetrance in subjects with SMC3 pLoF variants expands the scope of cohesinopathies, informs on their allelic architecture, and suggests the existence of additional clearly LoF-constrained genes whose disease links will be confirmed only by multi-layered genomic data paired with careful phenotyping.

3.
Am J Med Genet C Semin Med Genet ; 193(3): e32057, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37507620

RESUMO

The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.


Assuntos
Inteligência Artificial , Laboratórios Clínicos , Humanos , Genômica/métodos , Testes Genéticos , Fenótipo
4.
Cancer Discov ; 13(9): 2072-2089, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37255402

RESUMO

Fumarate accumulation due to loss of fumarate hydratase (FH) drives cellular transformation. Germline FH alterations lead to hereditary leiomyomatosis and renal cell cancer (HLRCC) where patients are predisposed to an aggressive form of kidney cancer. There is an unmet need to classify FH variants by cancer-associated risk. We quantified catalytic efficiencies of 74 variants of uncertain significance. Over half were enzymatically inactive, which is strong evidence of pathogenicity. We next generated a panel of HLRCC cell lines expressing FH variants with a range of catalytic activities, then correlated fumarate levels with metabolic features. We found that fumarate accumulation blocks de novo purine biosynthesis, rendering FH-deficient cells reliant on purine salvage for proliferation. Genetic or pharmacologic inhibition of the purine salvage pathway reduced HLRCC tumor growth in vivo. These findings suggest the pathogenicity of patient-associated FH variants and reveal purine salvage as a targetable vulnerability in FH-deficient tumors. SIGNIFICANCE: This study functionally characterizes patient-associated FH variants with unknown significance for pathogenicity. This study also reveals nucleotide salvage pathways as a targetable feature of FH-deficient cancers, which are shown to be sensitive to the purine salvage pathway inhibitor 6-mercaptopurine. This presents a new rapidly translatable treatment strategy for FH-deficient cancers. This article is featured in Selected Articles from This Issue, p. 1949.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Cutâneas , Humanos , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Virulência , Carcinoma de Células Renais/patologia , Neoplasias Renais/genética , Neoplasias Cutâneas/genética , Purinas
5.
Urology ; 176: 106-114, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36773955

RESUMO

OBJECTIVE: To clarify the link between germline variants in fumarate hydratase (FH), hereditary leiomyomatosis and renal cell cancer (HLRCC), and paraganglioma (PGL) and pheochromocytoma (PCC) we utilize a well-annotated hereditary cancer testing database. METHODS: Records of 120,061 patients receiving germline testing were obtained. FH variants were classified into 4 categories: autosomal dominant (AD) HLRCC variants, autosomal recessive (AR) fumarase deficiency (FMRD), variants, previously reported as PGL/PCC FH variants, and variants of unknown significance (VUS) not previously associated with PGL/PCC (NPP-VUS). Rates of PGL/PCC were compared with those with negative genetic testing. RESULTS: About 1.3% of individuals carried FH variants which were more common among individuals with PGL/PCC compared to those without (3.1% vs 1.3%, P < .0001). PGL/PCC rates were higher among individuals with PGL/PCC FH variants compared to those with negative genetic testing (22.2% vs 0.9%, P < .0001). Neither AD HLRCC variants (0.3% vs 0.9%, P = .35) nor AR FMRD variants (1.4% vs 0.9%, P = .19) carried an increased prevalence of PGL/PCC. An increased prevalence of PGL/PCC was detected in those with NPP-VUS (2.0% vs 0.9%, P = .0023). CONCLUSIONS: Certain FH variants confer an increased risk of PGL/PCC, but not necessarily HLRCC. While universal screening for PGL/PCC among all individuals with FH variants does not appear warranted, it should be considered in select high-risk PGL/PCC FH variants.


Assuntos
Neoplasias das Glândulas Suprarrenais , Paraganglioma , Feocromocitoma , Neoplasias Cutâneas , Neoplasias Uterinas , Feminino , Humanos , Neoplasias das Glândulas Suprarrenais/genética , Fumarato Hidratase/genética , Paraganglioma/genética , Feocromocitoma/genética , Neoplasias Cutâneas/genética
6.
J Pediatr ; 261: 113362, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36841509

RESUMO

We report 4 cases of primary ciliary dyskinesia in unrelated indigenous North American children caused by identical, homozygous, likely pathogenic deletions in the DNAL1 gene. These shared DNAL1 deletions among dispersed indigenous populations suggest that primary ciliary dyskinesia accounts for more lung disease with bronchiectasis than previously recognized in indigenous North Americans.


Assuntos
Bronquiectasia , Transtornos da Motilidade Ciliar , Criança , Humanos , Transtornos da Motilidade Ciliar/genética , América do Norte , Grupos Raciais
7.
J Mol Diagn ; 25(3): 156-167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563937

RESUMO

Nearly 14% of disease-causing germline variants result from the disruption of mRNA splicing. Most (67%) DNA variants predicted in silico to disrupt splicing are classified as variants of uncertain significance. An analytic workflow-splice effect event resolver (SPEER)-was developed and validated to use mRNA sequencing to reveal significant deviations in splicing, pinpoint the DNA variants potentially involved, and measure the deleterious effects of the altered splicing on mRNA transcripts, providing evidence for assessing the pathogenicity of the variant. SPEER was used to analyze leukocyte RNA encoding 63 hereditary cancer syndrome-related genes in 20,317 patients. Among 3563 patients (17.5%) with at least one DNA variant predicted to affect splicing, 971 (4.8%) had altered splicing with a deleterious effect on the transcript, and 40 had altered splicing due to a DNA variant located outside of the reportable range of the test. Integrating SPEER results into the interpretation of variants allowed variants of uncertain significance to be reclassified as pathogenic or likely pathogenic in 0.4%, and as benign or likely benign in 5.9%, of the 20,317 patients. SPEER-based evidence was associated with a significantly greater effect on classifications of pathogenic or likely pathogenic and benign or likely benign in nonwhite versus non-Hispanic white patients, illustrating that evidence derived from mRNA splicing analysis may help to reduce ethnic/ancestral disparities in genetic testing.


Assuntos
Testes Genéticos , Síndromes Neoplásicas Hereditárias , Humanos , Testes Genéticos/métodos , Splicing de RNA , RNA Mensageiro/genética , RNA , Síndromes Neoplásicas Hereditárias/genética
8.
Lancet Respir Med ; 10(5): 459-468, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35051411

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a motile ciliopathy characterised by otosinopulmonary infections. Inheritance is commonly autosomal recessive, with extensive locus and allelic heterogeneity. The prevalence is uncertain. Most genetic studies have been done in North America or Europe. The aim of the study was to estimate the worldwide prevalence and ethnic heterogeneity of PCD. METHODS: We calculated the allele frequency of disease-causing variants in 29 PCD genes associated with autosomal recessive inheritance in 182 681 unique individuals to estimate the global prevalence of PCD in seven ethnicities (African or African American, Latino, Ashkenazi Jewish, Finnish, non-Finnish European, east Asian, and south Asian). We began by aggregating variants that had been interpreted by Invitae, San Francisco, CA, USA, a genetics laboratory with PCD expertise. We then determined the allele frequency of each variant (pathogenic, likely pathogenic, or variant of uncertain significance [VUS]) in the Genome Aggregation Database (gnomAD), a publicly available next-generation sequencing database that aggregates exome and genome sequencing information from a wide variety of large-scale projects and stratifies allele counts by ethnicity. Using the Hardy-Weinberg equilibrium equation, we were able to calculate a lower-end prevalence of PCD for each ethnicity by including only pathogenic and likely pathogenic variants; and upper-end prevalence by also including VUS. This approach was similar to previous work on Li-Fraumeni (TP53 variants) prevalence. We were not diagnosing PCD, but rather estimating prevalence based on known variants. FINDINGS: The overall minimum global prevalence of PCD is calculated to be at least one in 7554 individuals, although this is likely to be an underestimate because some variants currently classified as VUS might be disease-causing and some pathogenic variants might not be detected by our methods. In the overall cohort, Invitae data could be included for variants without gnomAD data for a primary ethnicity. When using only gnomAD allele frequencies to calculate prevalence in individual ethnicities, the estimated prevalence of PCD was lower in each ethnicity compared with the overall cohort. This is because the overall cohort includes additional data from the Invitae database such as copy number variants and other variants not present in gnomAD. With gnomAD we found the expected PCD frequency to be higher in individuals of African ancestry than in most other populations (excluding VUS: 1 in 9906 in African or African American vs 1 in 10 388 in non-Finnish European vs 1 in 14 606 in east Asian vs 1 in 16 309 in Latino; including VUS: 1 in 106 in African or African American vs 1 in 178 in non-Finnish European vs 1 in 196 in Latino vs 1 in 188 in east Asian). In addition, we found that the top 5 genes most commonly implicated in PCD differed across ethnic ancestries and contrasted commonly published findings. INTERPRETATION: PCD appears to be more common than has been recognised, particularly in individuals of African ancestry. We identified gene distributions that differ from those in previous European and North American studies. These results could have an international impact on case identification. Our analytic approach can be expanded as more PCD loci are identified, and could be adapted to study the prevalence of other inherited diseases. FUNDING: None.


Assuntos
Transtornos da Motilidade Ciliar , Etnicidade , Bases de Dados Genéticas , Etnicidade/genética , Frequência do Gene , Humanos , Prevalência
9.
Cancer ; 128(4): 675-684, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34724198

RESUMO

BACKGROUND: Germline variants in fumarate hydratase (FH) are associated with autosomal dominant (AD) hereditary leiomyomatosis and renal cell cancer (HLRCC) and autosomal recessive (AR) fumarase deficiency (FMRD). The prevalence and cancer penetrance across different FH variants remain unclear. METHODS: A database containing 120,061 records from individuals undergoing cancer germline testing was obtained. FH variants were classified into 3 categories: AD HLRCC variants, AR FMRD variants, and variants of unknown significance (VUSs). Individuals with variants from these categories were compared with those with negative genetic testing. RESULTS: FH variants were detected in 1.3% of individuals (AD HLRCC, 0.3%; AR FMRD, 0.4%; VUS, 0.6%). The rate of AD HLRCC variants discovered among reportedly asymptomatic individuals without a clear indication for HLRCC testing was 1 in 2668 (0.04%). In comparison with those with negative genetic testing, the renal cell carcinoma (RCC) prevalence was elevated with AD HLRCC variants (17.0% vs 4.5%; P < .01) and VUSs (6.4% vs 4.5%; P = .02) but not with AR FMRD variants. CONCLUSIONS: The prevalence of HLRCC discovered incidentally on germline testing is similar to recent population carrier estimates, and this suggests that this is a relatively common cancer syndrome. Compared with those with negative genetic testing, those with VUSs had an elevated risk of RCC, whereas those with AR FMRD variants did not.


Assuntos
Carcinoma de Células Renais , Fumarato Hidratase , Neoplasias Renais , Leiomiomatose , Síndromes Neoplásicas Hereditárias , Neoplasias Cutâneas , Neoplasias Uterinas , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genética , Feminino , Fumarato Hidratase/genética , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Neoplasias Renais/epidemiologia , Neoplasias Renais/genética , Leiomiomatose/epidemiologia , Leiomiomatose/genética , Leiomiomatose/patologia , Síndromes Neoplásicas Hereditárias/epidemiologia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Prevalência , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uterinas/epidemiologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
10.
Hum Mutat ; 42(9): 1165-1172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34196078

RESUMO

Biallelic pathogenic variants in CFTR manifest as cystic fibrosis (CF) or other CFTR-related disorders (CFTR-RDs). The 5T allele, causing alternative splicing and reduced protein activity, is modulated by the adjacent TG repeat element, though previous data have been limited to small, selective cohorts. Here, the risk and spectrum of phenotypes associated with the CFTR TG-T5 haplotype variants (TG11T5, TG12T5, and TG13T5) in the absence of the p.Arg117His variant are evaluated. Individuals who received physician-ordered next-generation sequencing of CFTR were included. TG[11-13]T5 variant frequencies (biallelic or with another CF-causing variant [CFvar]) were calculated. Clinical information reported by the ordering provider or the individual was examined. Among 548,300 individuals, the T5 minor allele frequency (MAF) was 4.2% (TG repeat distribution: TG11 = 68.1%, TG12 = 29.5%, TG13 = 2.4%). When present with a CFvar, each TG[11-13]T5 variant was significantly enriched in individuals with a high suspicion of CF or CFTR-RD (personal/family history of CF/CFTR-RD) compared to those with a low suspicion for CF or CFTR-RD (hereditary cancer screening, CFTR not requisitioned). Compared to CFvar/CFvar individuals, those with TG[11-13]T5/CFvar generally had single-organ involvement, milder symptoms, variable expressivity, and reduced penetrance. These data improve our understanding of disease risks associated with TG[11-13]T5 variants and have important implications for reproductive genetic counseling.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Alelos , Variação Biológica da População , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação , Fenótipo
11.
J Pediatr ; 215: 172-177.e2, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31610925

RESUMO

OBJECTIVE: To evaluate whether cystic fibrosis transmembrane conductance regulator (CFTR) variants are more common among individuals tested for primary ciliary dyskinesia (PCD) compared with controls. STUDY DESIGN: Data were studied from 1021 individuals with commercial genetic testing for suspected PCD and 91 777 controls with genetic testing at the same company (Invitae) for symptoms/diseases unrelated to PCD or CFTR testing. The prevalence of CFTR variants was compared between controls and each of 3 groups of individuals tested for PCD (PCD-positive, -uncertain, and -negative molecular diagnosis). RESULTS: The prevalence of 1 pathogenic CFTR variant was similar among the individual groups. When combining the PCD-uncertain and PCR-negative molecular diagnosis groups, there was a higher prevalence of single pathogenic CFTR variants compared with controls (P = .03). Importantly, >1% of individuals who had negative genetic testing results for PCD had 2 pathogenic CFTR variants (8 of 723), and the incidence of cystic fibrosis (CF) (2 pathogenic variants) is roughly 1 in 3000 individuals of Caucasian ethnicity (∼0.03%). This incidence was also greater than that of 2 pathogenic CFTR variants in the control population (0.09% [84 of 91 777]; P = 9.60 × 10-16). These variants correlate with mild CFTR-related disease. CONCLUSIONS: Our results suggest that a single pathogenic CFTR variant is not likely to be a PCD-mimetic, but ongoing studies are needed in individuals in whom PCD is suspected and genetic testing results are uncertain or negative. Furthermore, CF may be misdiagnosed as PCD, reflecting phenotypic overlap. Among individuals evaluated for PCD, CF should be considered in the differential even in the CF newborn screening era.


Assuntos
Transtornos da Motilidade Ciliar/etiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/complicações , Mutação , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/genética , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Análise Mutacional de DNA , Feminino , Seguimentos , Testes Genéticos/métodos , Humanos , Recém-Nascido , Masculino , Prevalência , Estudos Retrospectivos
12.
Genome Med ; 9(1): 13, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166811

RESUMO

BACKGROUND: The frequency of a variant in the general population is a key criterion used in the clinical interpretation of sequence variants. With certain exceptions, such as founder mutations, the rarity of a variant is a prerequisite for pathogenicity. However, defining the threshold at which a variant should be considered "too common" is challenging and therefore diagnostic laboratories have typically set conservative allele frequency thresholds. METHODS: Recent publications of large population sequencing data, such as the Exome Aggregation Consortium (ExAC) database, provide an opportunity to characterize with accuracy and precision the frequency distributions of very rare disease-causing alleles. Allele frequencies of pathogenic variants in ClinVar, as well as variants expected to be pathogenic through the nonsense-mediated decay (NMD) pathway, were analyzed to study the burden of pathogenic variants in 79 genes of clinical importance. RESULTS: Of 1364 BRCA1 and BRCA2 variants that are well characterized as pathogenic or that are expected to lead to NMD, 1350 variants had an allele frequency of less than 0.0025%. The remaining 14 variants were previously published founder mutations. Importantly, we observed no difference in the distributions of pathogenic variants expected to be lead to NMD compared to those that are not. Therefore, we expanded the analysis to examine the distributions of NMD expected variants in 77 additional genes. These 77 genes were selected to represent a broad set of clinical areas, modes of inheritance, and penetrance. Among these variants, most (97.3%) had an allele frequency of less than 0.01%. Furthermore, pathogenic variants with allele frequencies greater than 0.01% were well characterized in publications and included many founder mutations. CONCLUSIONS: The observations made in this study suggest that, with certain caveats, a very low allele frequency threshold can be adopted to more accurately interpret sequence variants.


Assuntos
Bases de Dados Genéticas , Frequência do Gene , Variação Genética , Mutação , Doenças Raras/genética , Análise Mutacional de DNA , Exoma , Humanos , Doenças Raras/epidemiologia
13.
Front Cardiovasc Med ; 3: 20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446933

RESUMO

Advances in DNA sequencing have made large, diagnostic gene panels affordable and efficient. Broad adoption of such panels has begun to deliver on the promises of personalized medicine, but has also brought new challenges such as the presence of unexpected results, or results of uncertain clinical significance. Genetic analysis of inherited cardiac conditions is particularly challenging due to the extensive genetic heterogeneity underlying cardiac phenotypes, and the overlapping, variable, and incompletely penetrant nature of their clinical presentations. The design of effective diagnostic tests and the effective use of the results depend on a clear understanding of the relationship between each gene and each considered condition. To address these issues, we developed simple, systematic approaches to three fundamental challenges: (1) evaluating the strength of the evidence suggesting that a particular condition is caused by pathogenic variants in a particular gene, (2) evaluating whether unusual genotype/phenotype observations represent a plausible expansion of clinical phenotype associated with a gene, and (3) establishing a molecular diagnostic strategy to capture overlapping clinical presentations. These approaches focus on the systematic evaluation of the pathogenicity of variants identified in clinically affected individuals, and the natural history of disease in those individuals. Here, we applied these approaches to the evaluation of more than 100 genes reported to be associated with inherited cardiomyopathies and arrhythmias including hypertrophic cardiomyopathy, dilated cardiomyopathy, arrhythmogenic right ventricular dysplasia or cardiomyopathy, long QT syndrome, short QT syndrome, Brugada, and catecholaminergic polymorphic ventricular tachycardia, and to a set of related syndromes such as Noonan Syndrome and Fabry disease. These approaches provide a framework for delivering meaningful and accurate genetic test results to individuals with hereditary cardiac conditions.

14.
Ann Am Thorac Soc ; 11(3): 351-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24498942

RESUMO

RATIONALE: Primary ciliary dyskinesia (PCD) is an autosomal recessive genetic disorder of motile cilia. The diagnosis of PCD has previously relied on ciliary analysis with transmission electron microscopy or video microscopy. However, patients with PCD may have normal ultrastructural appearance, and ciliary analysis has limited accessibility. Alternatively, PCD can be diagnosed by demonstrating biallelic mutations in known PCD genes. Genetic testing is emerging as a diagnostic tool to complement ciliary analysis where interpretation and access may delay diagnosis. OBJECTIVES: To determine the diagnostic yield of genetic testing of patients with a confirmed or suspected diagnosis of PCD in a multiethnic urban center. METHODS: Twenty-eight individuals with confirmed PCD on transmission electron microscopy of ciliary ultrastructure and 24 individuals with a probable diagnosis of PCD based on a classical PCD phenotype and low nasal nitric oxide had molecular analysis of 12 genes associated with PCD. RESULTS: Of 49 subjects who underwent ciliary biopsy, 28 (57%) were diagnosed with PCD through an ultrastructural defect. Of the 52 individuals who underwent molecular genetic analysis, 22 (42%) individuals had two mutations in known PCD genes. Twenty-four previously unreported mutations in known PCD genes were observed. Combining both diagnostic modalities of biopsy and molecular genetics, the diagnostic yield increased to 69% compared with 57% based on biopsy alone. CONCLUSIONS: The diagnosis of PCD is challenging and has traditionally relied on ciliary biopsy, which is unreliable as the sole criterion for a definitive diagnosis. Molecular genetic analysis can be used as a complementary test to increase the diagnostic yield.


Assuntos
Testes Genéticos , Síndrome de Kartagener/diagnóstico , Técnicas de Diagnóstico Molecular , Adolescente , Adulto , Dineínas do Axonema/genética , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Síndrome de Kartagener/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
15.
Am J Med Genet A ; 161A(7): 1792-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23713026

RESUMO

Nephronophthisis associated ciliopathies (NPHP-AC) are a group of phenotypically related conditions that include Joubert syndrome, Meckel syndrome, nephronophthisis (NPHP), and Senior-Loken syndrome. We report on a male fetus with prenatal ultrasound findings at 24 weeks of gestation of anhydramnios, large and echogenic kidneys and situs inversus totalis. Histopathology revealed nephronophthisis and tracheal mucosa electron microscopy revealed ciliary dysgenesis. DNA analysis of the NPHP genes showed a previously unreported homozygous mutation, p.Arg603* (c.1078+1G>A), in the INVS/NPHP2 gene. This mutation is thought to abolish the splice donor site for exon 8, which likely disrupts the normal splicing of the INVS/NPHP2 gene.


Assuntos
Cílios/patologia , Doenças Renais Císticas/genética , Rim/anormalidades , Mutação , Fatores de Transcrição/genética , Feminino , Homozigoto , Humanos , Rim/embriologia , Doenças Renais Císticas/diagnóstico por imagem , Masculino , Gravidez , Sítios de Splice de RNA , Mucosa Respiratória/patologia , Situs Inversus/genética , Situs Inversus/patologia , Ultrassonografia Pré-Natal
16.
Biochem Biophys Res Commun ; 407(3): 495-500, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21414295

RESUMO

In eukaryotes, highly conserved Dna2 helicase/endonuclease proteins are involved in DNA replication, DNA double-strand break repair, telomere regulation, and mitochondrial function. The Dna2 protein assists Fen1 (Flap structure-specific endonuclease 1) protein in the maturation of Okazaki fragments. In yeast, Dna2 is absolutely essential for viability, whereas Fen1 is not. In Caenorhabditis elegans, however, CRN-1 (a Fen1 homolog) is essential, but Dna2 is not. Here we explored the biological function of C. elegans Dna2 (Cedna-2) in multiple developmental processes. We find that Cedna-2 contributes to embryonic viability, the morphogenesis of both late-stage embryos and male sensory rays, and normal life span. Our results support a model whereby CeDNA-2 minimizes genetic defects and maintains genome integrity during cell division and DNA replication. These finding may provide insight into the role of Dna2 in other multi-cellular organisms, including humans, and could have important implications for development and treatment of human conditions linked to the accumulation of genetic defects, such as cancer or aging.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , DNA Helicases/fisiologia , Endodesoxirribonucleases/fisiologia , Instabilidade Genômica , Longevidade , Morfogênese , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , DNA Helicases/genética , Replicação do DNA , Endodesoxirribonucleases/genética , Masculino , Mutação , Cauda/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA