Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(1): e13870, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37800856

RESUMO

Since 2014, Atlantic salmon (Salmo salar L.) displaying clinical signs of red skin disease (RSD), including haemorrhagic and ulcerative skin lesions, have been repeatedly observed in Swedish rivers. Although the disease has since been reported in other countries, including Norway, Denmark, Ireland and the UK, no pathogen has so far been conclusively associated with RSD. In this study, the presence of 17 fish pathogens was investigated through qPCR in 18 returning Atlantic salmon with clinical signs of the disease in rivers in Sweden and Norway between 2019 and 2021. Several potential pathogens were repeatedly detected, including a protozoan (Ichthyobodo spp.), an oomycete (Saprolegnia spp.) and several bacteria (Yersinia ruckeri, Candidatus Branchiomonas cysticola, Aeromonas spp.). Cultivation on different media from ulcers and internal organs revealed high concentrations of rod-shaped bacteria typical of Aeromonadaceae. Multilocus phylogenetic analysis of different clones and single gene phylogenies of sequences obtained from the fish revealed concurrent isolation of several bacterial strains belonging to the species A. bestiarum, A. piscicola and A. sobria. While these bacterial infections may be secondary, these findings are significant for future studies on RSD and should guide the investigation of future outbreaks. However, the involvement of Aeromonas spp. as putative primary etiological agents of the disease cannot be ruled out and needs to be assessed by challenge experiments.


Assuntos
Aeromonas , Doenças dos Peixes , Salmo salar , Úlcera Cutânea , Animais , Aeromonas/genética , Filogenia , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/microbiologia , Úlcera Cutânea/veterinária
2.
Arch Microbiol ; 205(6): 234, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37178378

RESUMO

Candidatus Branchiomonas cysticola is recognized as the most prevalent bacterial agent causing epitheliocystis in Atlantic salmon (Salmo salar). Based on its partial 16S rRNA sequence, the bacterium has previously been found to be a member of Burkholderiales in the class Betaproteobacteria. Multilocus Sequence Analysis (MLSA) of the bacterium and 60 type strains of Betaproteobacteria using newly identified housekeeping genes (dnaK, rpoC, and fusA) and ribosomal subunit sequences (16S and 23S), instead supported the bacterium's affiliation to Nitrosomodales. Taxonomic rank normalization by Relative Evolutionary Divergence (RED) showed the phylogenetic distinction between Cand. B. cysticola and its closest related type strain to be at the family level. A novel bacterial family named Branchiomonaceae has thus been proposed to include a monophyletic clade of Betaproteobacteria exclusively associated with epitheliocystis in fish.


Assuntos
Infecções Bacterianas , Betaproteobacteria , Burkholderiales , Chlamydiales , Doenças dos Peixes , Salmo salar , Animais , Betaproteobacteria/genética , Filogenia , RNA Ribossômico 16S/genética , Doenças dos Peixes/microbiologia , Chlamydiales/genética , Infecções Bacterianas/microbiologia , Burkholderiales/genética , Análise de Sequência de DNA , DNA Bacteriano/genética
3.
Arch Microbiol ; 204(7): 365, 2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35661924

RESUMO

Candidatus Branchiomonas cysticola is an intracellular, gram-negative Betaproteobacteria causing epitheliocystis in Atlantic Salmon (Salmo salar L.). The bacterium has not been genetically characterized at the intraspecific level despite its high prevalence among salmon suffering from gill disease in Norwegian aquaculture. DNA from gill samples of Atlantic salmon PCR positive for Cand. B. cysticola and displaying pathological signs of gill disease, was, therefore, extracted and subject to next-generation sequencing (mNGS). Partial sequences of four housekeeping (HK) genes (aceE, lepA, rplB, rpoC) were ultimately identified from the sequenced material. Assays for real-time RT-PCR and fluorescence in-situ hybridization, targeting the newly acquired genes, were simultaneously applied with existing assays targeting the previously characterized 16S rRNA gene. Agreement in both expression and specificity between these putative HK genes and the 16S gene was observed in all instances, indicating that the partial sequences of these HK genes originate from Cand. B. cysticola. The knowledge generated from the present study constitutes a major prerequisite for the future design of novel genotyping schemes for this bacterium.


Assuntos
Infecções Bacterianas , Burkholderiales , Doenças dos Peixes , Salmo salar , Animais , Infecções Bacterianas/microbiologia , Burkholderiales/genética , Doenças dos Peixes/microbiologia , Genes Essenciais , Brânquias/microbiologia , RNA Ribossômico 16S/genética
4.
PLoS One ; 14(4): e0215478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30990853

RESUMO

The infectious salmon anaemia virus (ISAV) is an important pathogen on farmed salmon in Europe. The virus occurs as low- and high virulent variants where the former seem to be a continuous source of new high virulent ISAV. The latter are controlled in Norway by stamping out infected populations while the former are spreading uncontrolled among farmed salmon. Evidence of vertical transmission has been presented, but there is still an ongoing discussion of the importance of circulation of ISAV via salmon brood fish. The only known wild reservoirs are in trout (Salmo trutta) and salmon (Salmo salar). This study provides the first ISAV sequences from wild salmonids in Norway and evaluates the importance of this reservoir with respect to outbreaks of ISA among farmed salmon. Phylogenetic analyses of the surface protein hemagglutinin-esterase gene from nearly all available ISAV from Norway, Faeroe Islands, Scotland, Chile and wild salmonids in Norway show that they group into four major clades. Including virulent variants in the analysis show that they belong in the same four clades supporting the hypothesis that there is a high frequency of transition from low to high virulent variants in farmed populations of salmon. There is little support for a hypothesis suggesting that the wild salmonids feed the virus into farmed populations. This study give support to earlier studies that have documented local horizontal transmission of high virulent ISAV, but the importance of transition from low- to high virulent variants has been underestimated. Evidence of vertical transmission and long distance spreading of ISAV via movement of embryos and smolt is presented. We recommend that the industry focus on removing the low virulent ISAV from the brood fish and that ISAV-free brood fish salmon are kept in closed containment systems (CCS).


Assuntos
Doenças dos Peixes , Pesqueiros , Isavirus , Infecções por Orthomyxoviridae , Salmo salar/virologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/transmissão , Doenças dos Peixes/virologia , Hemaglutininas Virais/genética , Isavirus/genética , Isavirus/patogenicidade , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/transmissão , Filogenia , Proteínas Virais de Fusão/genética , Proteínas Virais/genética , Fatores de Virulência/genética
5.
PLoS One ; 13(11): e0206951, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30383870

RESUMO

Mouthrot, caused by Tenacibaculum maritimum is a significant disease of farmed Atlantic salmon, Salmo salar on the West Coast of North America. Smolts recently transferred into saltwater are the most susceptible and affected fish die with little internal or external clinical signs other than the characteristic small (usually < 5 mm) yellow plaques that are present inside the mouth. The mechanism by which these smolts die is unknown. This study investigated the microscopic pathology (histology and scanning electron microscopy) of bath infected smolts with Western Canadian T. maritimum isolates TmarCan15-1, TmarCan16-1 and TmarCan16-5 and compared the findings to what is seen in a natural outbreak of mouthrot. A real-time RT-PCR assay based on the outer membrane protein A specific for T. maritimum was designed and used to investigate the tissue tropism of the bacteria. The results from this showed that T. maritimum is detectable internally by real-time RT-PCR. This combined with the fact that the bacteria can be isolated from the kidney suggests that T. maritimum becomes systemic. The pathology in the infected smolts is primarily mouth lesions, including damaged tissues surrounding the teeth; the disease is similar to periodontal disease in mammals. The pathological changes are focal, severe, and occur very rapidly with little associated inflammation. Skin lesions are more common in experimentally infected smolts than in natural outbreaks, but this could be an artefact of the challenge dose, handling and tank used during the experiments.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Salmo salar/microbiologia , Tenacibaculum , Animais , Biópsia , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/mortalidade , Reação em Cadeia da Polimerase em Tempo Real , Tenacibaculum/genética , Dente/patologia , Dente/ultraestrutura
6.
J Fish Biol ; 93(3): 567-579, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29952001

RESUMO

The use of closed containment (CCS) or semi-closed containment systems (S-CCS) for Atlantic salmon Salmo salar aquaculture is under evaluation in Norway. One such system is the Preline S-CCS, a floating raceway system that pumps water from 35 m depth creating a constant current through the system. Exposing fish to moderate water currents is considered aerobic exercise and it is often perceived as positive for fish welfare, growth, food utilization, muscle development and cardiac health. The present study compared fish reared in the Preline S-CCS and in a reference open pen. Samples were taken in fresh water before being transferred to the seawater systems and after 1, 2 and 4 months in seawater and analysed for growth, mortality, muscle development and plasma insulin-like growth factor I (IGF-I) levels. Moreover, gene transcription were determined in the skeletal muscle [igf-I, insulin-like growth factor 1 receptor a (igf1ra) and insulin-like growth factor 1 binding protein 1a (igf1bp1a)] and cardiac transcription factors [myocyte-specific enhancer factor 2C (mef2c), gata4 and vascular endothelial growth factor (vegf)]. While the results suggest that post-smolts in Preline S-CCS were smaller than reference fish, fish from Preline S-CCS have less accumulated mortality at the end of the experiment and showed 2.44 times more small muscle fibres than the reference group fish after 4 months in seawater. These results confirmed what was previously observed in the second generation of Preline. Similar levels of big muscle fibres between Preline S-CCS and reference suggest a similar hypertrophy of muscle fibres even with lower IGF-I expression in the Preline S-CCS. Cardiac gene transcription suggests cardiac hypertrophy was observed after 4 months in seawater in the Preline S-CCS group. Altogether, Preline S-CCS is a promising technology able to produce more robust S. salar with a faster growth and lower mortality in the subsequent standard open cage system growth period.


Assuntos
Aquicultura/instrumentação , Desenvolvimento Muscular , Condicionamento Físico Animal , Salmo salar/crescimento & desenvolvimento , Animais , Água Doce , Abrigo para Animais , Fator de Crescimento Insulin-Like I/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Noruega , Oceanos e Mares , Salmo salar/anatomia & histologia , Salmo salar/sangue , Água do Mar , Natação , Transcrição Gênica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Qualidade da Água
7.
Arch Virol ; 163(3): 679-685, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29147783

RESUMO

In this study, we determined the complete coding sequence of a putative new member of the family Flaviviridae, named "Cyclopterus lumpus virus" (CLuV), which is associated with a serious disease in lumpfish (Cyclopterus lumpus). The virus was present in all tissues tested, but pathology was primarily observed in the liver and kidneys. CLuV shows low but distinct similarity to the unassigned Tamana bat virus (TABV). Unlike other known members of the family Flaviviridae, translation of the entire CLuV polyprotein is dependent on a - 1 ribosomal frameshift in the NS2A region.


Assuntos
Doenças dos Peixes/epidemiologia , Infecções por Flaviviridae/veterinária , Flaviviridae/genética , Regulação Viral da Expressão Gênica , Perciformes/virologia , Proteínas não Estruturais Virais/genética , Sequência de Aminoácidos , Animais , Doenças dos Peixes/virologia , Flaviviridae/classificação , Flaviviridae/isolamento & purificação , Infecções por Flaviviridae/epidemiologia , Infecções por Flaviviridae/virologia , Expressão Gênica , Rim/patologia , Rim/virologia , Fígado/patologia , Fígado/virologia , Noruega/epidemiologia , Filogenia , Biossíntese de Proteínas , Proteínas não Estruturais Virais/metabolismo
8.
Antonie Van Leeuwenhoek ; 109(2): 273-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26662517

RESUMO

A novel Gram-stain negative, aerobic, non-flagellated, rod-shaped gliding bacterial strain, designated HFJ(T), was isolated from a skin lesion of a diseased Atlantic salmon (Salmo salar L.) in Finnmark, Norway. Colonies were observed to be yellow pigmented with entire and/or undulating margins and did not adhere to the agar. The 16S rRNA gene sequence showed that the strain belongs to the genus Tenacibaculum (family Flavobacteriaceae, phylum 'Bacteroidetes'). Strain HFJ(T) exhibits high 16S rRNA gene sequence similarity values to Tenacibaculum dicentrarchi NCIMB 14598(T) (97.2 %). The strain was found to grow at 2-20 °C and only in the presence of sea salts. The respiratory quinone was identified as menaquinone 6 and the major fatty acids were identified as summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH), iso-C15:0, anteiso-C15:0, iso-C15:1 and iso-C15:0 3-OH. The DNA G+C content was determined to be 34.1 mol%. DNA-DNA hybridization and comparative phenotypic and genetic tests were performed with the phylogenetically closely related type strains, T. dicentrarchi NCIMB 14598(T) and Tenacibaculum ovolyticum NCIMB 13127(T). These data, as well as phylogenetic analyses, suggest that strain HFJ(T) should be classified as a representative of a novel species in the genus Tenacibaculum, for which the name Tenacibaculum finnmarkense sp. nov. is proposed; the type strain is HFJ (T) = (DSM 28541(T) = NCIMB 42386(T)).


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Flavobacteriaceae/veterinária , Salmo salar/microbiologia , Tenacibaculum/isolamento & purificação , Animais , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Infecções por Flavobacteriaceae/microbiologia , Dados de Sequência Molecular , Noruega , Filogenia , RNA Ribossômico 16S/genética , Tenacibaculum/classificação , Tenacibaculum/genética , Tenacibaculum/metabolismo
9.
Arch Microbiol ; 197(1): 17-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294188

RESUMO

Two Chlamydiales have previously been found to infect Atlantic salmon (Salmo salar L.), Candidatus Piscichlamydia salmonis and Candidatus Clavichlamydia salmonicola. Both develop intracellularly in cyst-like inclusions in gill cells, generally referred to as epitheliocysts. Here, we present evidence for the association of a novel species of Chlamydiales with epitheliocystis in Atlantic salmon. Based on its partial 16S rRNA gene sequence, it is a new member of the family Simkaniaceae, and a 95.7 % identity to the type species Candidatus Syngnamydia venezia suggests inclusion in the candidate genus Syngnamydia. The presence of the bacterium in epitheliocysts in gills of Atlantic salmon was demonstrated by RNA-RNA hybridization. Ultrastructurally, the novel bacterium produces pleomorphic reticulate bodies and elementary bodies (EBs) with a characteristic morphology. The EBs are short rods with a terminal disc-like cap area, a sub-apical spherical vacuole-like electron-lucent structure and a post-equatorial nucleoid. We propose the name Candidatus Syngnamydia salmonis for this new agent from epitheliocysts in seawater-reared salmon .


Assuntos
Chlamydiales/classificação , Chlamydiales/isolamento & purificação , Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Corpos de Inclusão/microbiologia , Salmo salar/microbiologia , Animais , Chlamydiales/genética , Chlamydiales/ultraestrutura , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Doenças dos Peixes/patologia , Brânquias/ultraestrutura , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/patologia , Corpos de Inclusão/ultraestrutura , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Vacúolos/ultraestrutura
10.
J Eukaryot Microbiol ; 57(2): 95-114, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20070452

RESUMO

Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life-cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle-I) and in the nuclei of epidermal cells (Cycle-II), respectively. Cycle-I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle-II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus.


Assuntos
Apansporoblastina/classificação , Apansporoblastina/crescimento & desenvolvimento , Copépodes/parasitologia , Estágios do Ciclo de Vida , Salmo salar/parasitologia , Animais , Apansporoblastina/genética , Apansporoblastina/isolamento & purificação , Núcleo Celular/parasitologia , Citoplasma/parasitologia , DNA de Protozoário/química , DNA de Protozoário/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Epiderme/parasitologia , Células Epiteliais/parasitologia , Genes de RNAr , Dados de Sequência Molecular , Fagócitos/parasitologia , RNA de Protozoário/genética , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Esporos de Protozoários/citologia
11.
Arch Virol ; 153(7): 1299-309, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18521535

RESUMO

Proliferative gill disease (PGD) is an emerging problem in Norwegian culture of Atlantic salmon (Salmo salar). Parasites (Ichthyobodo spp.) and bacteria (Flexibacter/Flavobacterium) may cause PGD, but for most cases of PGD in farmed salmon in Norway, no specific pathogen has been identified as the causative agent. However, Neoparamoeba sp. and several bacteria and viruses have been associated with this disease. In the spring of 2006, a new poxvirus, salmon gill poxvirus (SGPV), was discovered on the gills of salmon suffering from PGD in fresh water in northern Norway. Later the same year, this virus was also found on gills of salmon at two marine sites in western Norway. All farms suffered high losses associated with the presence of this virus. In this study, we describe the entry and morphogenesis of the SGP virus in epithelial gill cells from Atlantic salmon. Intracellular mature virions (IMVs) are the only infective particles that seem to be produced. These are spread by cell lysis and by "budding" of virus packages, containing more that 100 IMVs, from the apical surface of infected cells. Entry of the IMVs appears to occur by attachment to microridges on the cell surface and fusion of the viral and cell membranes, delivering the cores into the cytoplasm. The morphogenesis starts with the emergence of crescents in viroplasm foci in perinuclear areas of infected cells. These crescents consist of two tightly apposed unit membranes (each 5 nm thick) that seem to be derived from membranes of the endoplasmic reticulum. The crescents develop into spheres, immature virions (IVs), that are 350 nm in diameter and surrounded by two unit membranes. The maturation of the IVs occurs by condensation of the core material and a change from spherical to boat-shaped particles, intracellular mature virions (IMVs), that are about 300 nm long. Hence, the IMVs from the SGP virus have a different morphology compared to other vertebrate poxviruses that are members of the subfamily Chordopoxvirinae, and they are more similar to members of subfamily Entomopoxvirinae, genus Alphaentomopoxvirus. However, it is premature to make a taxonomic assignment until the genome of the SGP virus has been sequenced, but morphogenesis clearly shows that this virus is a member of family Poxviridae.


Assuntos
Doenças dos Peixes/virologia , Brânquias/virologia , Poxviridae/fisiologia , Salmo salar/virologia , Montagem de Vírus , Internalização do Vírus , Animais , Citoplasma/ultraestrutura , Citoplasma/virologia , Células Epiteliais/diagnóstico por imagem , Células Epiteliais/virologia , Histocitoquímica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Noruega , Poxviridae/ultraestrutura , Ultrassonografia
12.
Environ Microbiol ; 10(1): 208-18, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17894816

RESUMO

The phylum Chlamydiae contains obligate intracellular bacteria, several of which cause disease in their hosts. Morphological studies have suggested that this group of bacteria may be pathogens of fish, causing cysts in epithelial tissue - epitheliocystis. Recently, the first genetic evidence of a chlamydial aetiology of this disease in seawater reared Atlantic salmon from Norway and Ireland was presented, and the agent was given the name 'Candidatus Piscichlamydia salmonis'. In this article we present molecular evidence for the existence of a novel Chlamydiae that also may cause epitheliocystis in Norwegian salmonids. This novel Chlamydiae has been found in salmonid fish from freshwater, and based on its partial 16S rRNA gene, it may constitute a third genus in the family Chlamydiaceae, or a closely related sister family. By using whole-mount RNA-RNA hybridization we demonstrate how infected cells are distributed in a patchy manner on a gill arch. The morphology of the novel Chlamydiae includes the characteristic head-and-tail cells that have been described earlier from salmonid fish suffering from epitheliocystis. We propose the name 'Candidatus Clavochlamydia salmonicola' for this agent of epitheliocystis in freshwater salmonids.


Assuntos
Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/classificação , Doenças dos Peixes/microbiologia , Salmonidae/microbiologia , Animais , Sequência de Bases , Chlamydiaceae/genética , Infecções por Chlamydiaceae/microbiologia , Ecologia , Água Doce/microbiologia , Brânquias/microbiologia , Brânquias/patologia , Hibridização In Situ , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Noruega , Filogenia
13.
Arch Microbiol ; 187(5): 343-50, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17160676

RESUMO

A Francisella sp., isolate GM2212(T), previously isolated from diseased farmed Atlantic cod Gadus morhua in Norway is characterized. The complete 16S rDNA, 16S-23S intergenic spacer, 23S rDNA, 23S-5S intergenic spacer, 5S rDNA, FopA, lipoprotein TUL4 (LpnA), malate dehydrogenase and a hypothetical lipoprotein (LpnB) is sequenced and compared with Francisella tularensis and Francisella philomiragia. All these sequences support a close relationship between GM2212(T) and F. philomiragia. The bacterium grows at 10-25 degrees C with an optimum at about 20 degrees C, a temperature range clearly different from F. tularensis and F. philomiragia. GM2212(T) is catalase-positive, indole positive, oxidase-negative, do not produce H(2)S in Triple Sugar Iron agar, and does not hydrolyze gelatin, is resistant to erythromycin and susceptible to ceftazidime, the latter five characteristics separating it from F. philomiragia. Cysteine enhances growth. Acid is produced from D: -glucose, maltose, sucrose (weak) but not from lactose or glycerol. GM2212(T) grows on both MacConkey agar and in nutrient broth (6% NaCl). The bacterium is resistant to trimethoprim-sulfamethoxazole, penicillines, cefuroxime and erythromycin; but is susceptible to ceftazidime, tetracycline, gentamicin, ciprofloxacin. Based on the molecular and phenotypical characteristics, we suggest that this GM2212 isolate, may represent a new species of Francisella. Isolate GM2212(T) (=CNCM I-3481(T) = CNCM I-3511(T) = DSM 18777(T)).


Assuntos
Doenças dos Peixes/microbiologia , Francisella/isolamento & purificação , Gadus morhua/microbiologia , Animais , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Doenças dos Peixes/patologia , Francisella/classificação , Francisella/genética , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/análise , RNA Ribossômico 23S/genética
14.
Arch Microbiol ; 185(5): 383-92, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16614828

RESUMO

In 2004, a new disease was detected in cod (Gadus morhua) in western Norway. Affected cod had white granulomas in the visceral organs and skin. A species of Francisella was isolated on blood agar plates from moribund cod. The bacterium could be grown at temperatures ranging from 6 to 22 degrees C, but did not grow at 37 degrees C. Challenge experiments showed that Francisella sp. was the cause for the new disease. The 16S rDNA gene sequence from Francisella sp. showed 99.17% similarity to F. philomiragia, and the 16S-23S ribosomal RNA intergenic spacer (249 nt), shows a similarity with that from Francisella isolated from tilapia and F. tularensis of 96.8 and 35.9%, respectively. The 23S sequence is more similar to F. tularensis, 97.7% (2,862 nt), compared to the tilapia isolate 96.8% (2,131 nt). The partial putative outer membrane protein (FopA) sequence (781 nt) from Francisella sp. shows a similarity with that from F. tularensis and F. philomiragia of 77.3 and 98.2%, respectively. Based on sequence data, culturing temperatures and pathogenicity for cod, it is suggested that this Francisella sp. from cod could be a new species of Francisella, Family Francisellaceae.


Assuntos
Doenças dos Peixes/microbiologia , Francisella/isolamento & purificação , Gadus morhua/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Proteínas da Membrana Bacteriana Externa/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Doenças dos Peixes/patologia , Francisella/classificação , Francisella/citologia , Francisella/fisiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/mortalidade , Infecções por Bactérias Gram-Negativas/patologia , Histocitoquímica , Rim/microbiologia , Rim/patologia , Rim/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Noruega , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Análise de Sequência de DNA , Homologia de Sequência , Pele/microbiologia , Baço/microbiologia , Baço/patologia , Temperatura
15.
Dis Aquat Organ ; 68(3): 251-9, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16610591

RESUMO

A total of 210 Lepeophtheirus salmonis collected from 7 locations (Scotland, Russia, Canada, Japan and 3 locations in Norway), were screened for sequence variation in 4 mitochondrial genes; ATPase subunit 6 (A6), Cytochrome b oxidase subunit I (COI), Cytochrome b (Cyt b) and 16S rRNA. A high level of intraspecific variation was observed within all genes. The majority of polymorphisms were present in single individuals only, which resulted in a high number of private haplotypes within each gene. Little evidence of genetic differentiation was observed among the 3 Norwegian locations or between L. salmonis samples from Norway, Scotland and Russia. Pairwise FST values indicated that a weak degree of sub-division between L. salmonis sampled in Canada and the Northeast Atlantic might, however, exist. All samples collected in the Atlantic were highly different from the Japanese sample. It is suggested that the lack of genetic differentiation among lice samples from the North Atlantic is a result of extensive gene flow mediated by passive transport of L. salmonis larvae, and the migratory pattern of its salmonid hosts.


Assuntos
Adenosina Trifosfatases/genética , Copépodes/genética , Citocromos b/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , RNA Ribossômico 16S/genética , Animais , Sequência de Bases , Canadá , Copépodes/enzimologia , Primers do DNA/química , Europa (Continente) , Evolução Molecular , Feminino , Genes Mitocondriais/genética , Variação Genética , Genética Populacional/métodos , Haplótipos/genética , Japão , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/veterinária , Polimorfismo Genético/genética , Salmão/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA