Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 347: 114423, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086427

RESUMO

17ß-hydroxysteroid dehydrogenases (Hsd17bs) play a critical role in sex steroid biosynthesis. Although multiple types of Hsd17b have been found in fish, there is limited research on their expression and function. Recently, we succeeded in identifying eight types of Hsd17b (types 3, 4, 7, 8, 10, 12a, 12b, and 14) by RNA sequencing in the Japanese sardine Sardinops melanostictus, a commercially important clupeoid fish; however, a homologous sequence of Hsd17b1, which catalyzes the key reaction of estradiol-17ß (E2) synthesis, was absent. Here, we aimed to identify the Hsd17b type that plays a major role in E2 synthesis during ovarian development in Japanese sardine. The cDNAs encoding those eight types of Hsd17b were cloned and sequenced. The expressions of hsd17b3, hsd17b12a, and hsd17b12b were higher in ovary than in testis. In particular, hsd17b12a was predominantly expressed in the ovary. Expression of hsd17b3, hsd17b4, hsd17b12a, and hsd17b12b in the ovary increased during ovarian development. The enzymatic activities of Hsd17b3, Hsd17b12a, and Hsd17b12b were evaluated by expressing their recombinants in human embryonic kidney 293T cells. Hsd17b12a and Hsd17b12b catalyzed the conversion of androstenedione (AD) to testosterone (T) and estrone (E1) to E2. The results of in vitro bioassays using sardine ovaries indicated that E2 is synthesized from pregnenolone via AD and T, but not E1. These results suggest that Hsd17b12a plays a major role in E2 synthesis in sardine ovary by catalyzing the conversion of AD to T.


Assuntos
Estradiol , Ovário , Masculino , Feminino , Animais , Humanos , Ovário/metabolismo , Estradiol/metabolismo , Testículo/metabolismo , Testosterona/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Androstenodiona/metabolismo , Peixes/genética , Peixes/metabolismo
2.
Gen Comp Endocrinol ; 328: 114103, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940318

RESUMO

The pituitary gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play critical roles in regulating gonadal development and sexual maturation in vertebrates. We developed non-competitive enzyme-linked immunosorbent assays (ELISAs) to measure Fsh and Lh in chub mackerel Scomber japonicus, which is a commercially important scombrid species. Mouse monoclonal antibodies specific for Fsh and Lh, and a rabbit polyclonal antibody against both Gths were produced by immunization with hormones purified from chub mackerel pituitaries. These monoclonal and polyclonal antibodies were used as capture and detection antibodies in the developed sandwich ELISAs. The ELISAs were reproducible, sensitive, and specific for chub mackerel Fsh and Lh. Parallelism between the standard curve and serial dilutions of chub mackerel serum and pituitary extract was observed for both Fsh and Lh ELISAs. Comparison between vitellogenic and immature females revealed that Fsh is secreted during vitellogenesis and Lh is barely released during immaturity. After gonadotropin-releasing hormone analog (GnRHa) injection, vitellogenic females showed increases in serum Lh, whereas serum levels of Fsh did not vary. Moreover, the serum steroid profiles revealed that estradiol-17ß was continuously produced after GnRHa treatment, whereas 17,20ß-dihydroxy-4-pregnen-3-one secretion was transiently induced. These results indicate that, in vitellogenic females, GnRHa stimulates the release of Lh, but not Fsh, which results in acceleration of vitellogenesis and induction of oocyte maturation via steroid production.


Assuntos
Cyprinidae , Perciformes , Animais , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática/métodos , Estradiol , Feminino , Hormônio Foliculoestimulante , Hormônio Liberador de Gonadotropina , Gonadotropinas , Gonadotropinas Hipofisárias , Hormônio Luteinizante , Camundongos , Perciformes/fisiologia , Coelhos , Vitelogênese
3.
Cell Tissue Res ; 389(2): 259-287, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35552517

RESUMO

Unlike mammals, teleost fish have high aromatase activity (AA) in the pituitary. However, the cells responsible for oestradiol synthesis and the local physiological roles of this hormone remain unclear. Hence, we investigated the effects of age and development on steroidogenic activity, mRNA expression, and cyp19a1b localization in the pituitary gland of the Japanese pufferfish Takifugu rubripes. Under aquaculture conditions, AA was highest after puberty, and the mRNA expression levels of cyp19a1b and the oestrogen receptors esr1 and 2b and the level of serum testosterone (T) were significantly increased after puberty compared with the other developmental stages in male and female pufferfish. Immunohistochemistry using multiple antibodies and in situ hybridization analysis revealed that Cyp19a1b colocalizes with luteinizing hormone (LH) in pituitary cells. Furthermore, Esr1 was localized in the nuclei of all hormone-producing cells, whereas Esr2b was localized only in the nuclei of Cyp19- and LH-positive cells. The administration of an aromatizable androgen (T) or oestrogen (E2) to reproductively inactive females induced LH synthesis in vivo. We prepared spheroids from pituitary cells to investigate the role of local E2 in LH synthesis in vitro. Immunohistochemical analysis of spheroids showed that T-induced LH synthesis could be blocked by an aromatase inhibitor and/or an ER antagonist but not an AR antagonist. Taken together, these findings suggest that LH synthesis is initiated in cyp19a1b-, esr1-, and esr2b-expressing cells at the onset of puberty under the control of steroidal feedback, and both feedback and local oestrogen may be involved in controlling LH synthesis in these cells.


Assuntos
Aromatase , Takifugu , Animais , Aromatase/genética , Estradiol/farmacologia , Estrogênios , Feminino , Hormônio Foliculoestimulante , Hormônio Luteinizante , Masculino , Mamíferos/metabolismo , Hipófise/metabolismo , Puberdade , RNA Mensageiro/genética , Takifugu/genética , Testosterona/metabolismo
4.
BMC Genomics ; 21(1): 668, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993516

RESUMO

BACKGROUND: The clupeoid fishes are ecologically and commercially important fish species worldwide that exhibit a high level of population fluctuation, accompanied by alteration of reproductive traits. However, knowledge about their reproductive physiology in order to understand mechanisms underlying such population dynamics is limited. The endocrine system along with the brain-pituitary-gonadal (BPG) axis is critical for regulating reproduction. The aims of this study were to provide transcript data and genes related to the BPG axis, and to characterize the expression profiles of ovarian steroidogenesis-related genes in the Japanese sardine (Sardinops melanostictus, Clupeidae). RESULTS: RNA sequencing was performed using the sardine brain, pituitary, and gonad in both sexes. A total of 290,119 contigs were obtained and 115,173 non-redundant ORFs were annotated. The genes differentially expressed between ovary and testis were strongly associated with GO terms related to gamete production. The tissue-specific profile of the abundance of transcripts was characterized for the major regulators in the BPG axis, such as gonadotropin-releasing hormone, gonadotropin, and steroidogenic enzyme. By comparing between ovary and testis, out of eight different 17ß-hydroxysteroid dehydrogenase (Hsd17b) genes identified, higher hsd17b7 expression was found in testis, whereas higher expression of hsd17b8, hsd17b10, hsd17b12a, and hsd17b12b was found in ovary. The cDNAs encoding key endocrine factors in the ovarian steroidogenic pathway were cloned, sequenced, and quantitatively assayed. In the pituitary, follicle-stimulating hormone beta peaked during vitellogenesis, while luteinizing hormone beta peaked at the completion of vitellogenesis. In the ovary, follicle-stimulating hormone receptor and luteinizing hormone receptor were upregulated from mid- to late phase of vitellogenesis. Furthermore, three steroidogenic enzyme genes (cyp11a1, cyp17a1, and cyp19a1a) gradually increased their expression during ovarian development, accompanying a rise in serum estradiol-17ß, while 3ß-hydroxysteroid dehydrogenase and steroidogenic acute regulatory protein did not change significantly. CONCLUSIONS: This is the first report of deep RNA sequencing analysis of Japanese sardine, in which many key genes involved in the BPG axis were identified. Expression profiles of ovarian steroidogenesis-related genes provide a molecular basis of the physiological processes underlying ovarian development in the sardine. Our study will be a valuable resource for clarifying the molecular biology of clupeoid fishes.


Assuntos
Encéfalo/metabolismo , Peixes/genética , Hormônios Esteroides Gonadais/genética , Ovário/metabolismo , Hipófise/metabolismo , Transcriptoma , 11-beta-Hidroxiesteroide Desidrogenases/genética , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo
5.
J Fish Biol ; 95(5): 1350-1354, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31513717

RESUMO

The effects of gonadotropin-releasing hormone agonist (GnRHa) on plasma levels of follicle-stimulating hormone (Fsh) and luteinising hormone (Lh) are reported for female greater amberjack Seriola dumerili with post-vitellogenic ovarian oocytes. Five females were implanted with pellets containing GnRHa (600 µg kg-1 body weight), while five other females were injected with saline. All females implanted with GnRHa-containing pellets ovulated 36-42 h post-implantation. The GnRHa implants elevated Lh, but not Fsh plasma levels within 42 h of GnRHa administration.


Assuntos
Hormônio Foliculoestimulante/sangue , Hormônio Liberador de Gonadotropina/agonistas , Hormônio Luteinizante/sangue , Ovulação/efeitos dos fármacos , Perciformes/fisiologia , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Oócitos/efeitos dos fármacos , Ovário/efeitos dos fármacos
6.
Gen Comp Endocrinol ; 269: 149-155, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236970

RESUMO

In Seriola species, exposure to a long photoperiod regime is known to induce ovarian development. This study examined photoperiodic effects on pituitary gene expression and plasma levels of follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) in previtellogenic greater amberjack (Seriola dumerili). The fish were exposed to short (8L:16D) or long (18L:6D) photoperiod. The water temperature was maintained at 22 °C. Compared with the short-photoperiod group, plasma Fsh levels were higher on days 10 and 30 in the long-photoperiod group, but plasma Lh levels did not significantly differ. On day 30, pituitary Fsh- and Lh-ß subunit gene expressions were also higher in the long-photoperiod group than the short-photoperiod group, whereas α-subunit gene expressions were higher on days 20 and 30. Throughout the experiment, average gonadosomatic index and plasma E2 levels did not significantly differ between the two groups. This study clearly demonstrated that a long photoperiod induced Fsh release in the previtellogenic fish followed by upregulation of pituitary Fsh and Lh subunit gene expressions. An increase in plasma Fsh levels may be a key factor that mediates the photoperiodic effect on the initiation of ovarian development.


Assuntos
Gonadotropinas/sangue , Perciformes/sangue , Perciformes/fisiologia , Fotoperíodo , Vitelogênese , Animais , Estradiol/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Hormônio Luteinizante/sangue , Hormônio Luteinizante/genética , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Ovário/crescimento & desenvolvimento , Perciformes/crescimento & desenvolvimento , Perciformes/metabolismo , Hipófise/citologia , Hipófise/metabolismo , Temperatura , Água
7.
Gen Comp Endocrinol ; 239: 4-12, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27255365

RESUMO

Using a recombinant chimeric single-chain follicle stimulating hormone (FSH), we established a radioimmunoassay (RIA) for red seabream (Pagrus major) FSH (pmFSH) which became a powerful tool for studying reproductive physiology. We studied the profiles in plasma and pituitary concentrations of FSH and luteinizing hormone (LH) during sexual maturation. A pre-established RIA for red seabream LH was used for the LH measurements. The regulation of FSH and LH secretion from the pituitary was investigated using a gonadotropin-releasing hormone analog (GnRHa) in vivo and in vitro. Marked differences in plasma and pituitary FSH levels were observed between males and females; pituitary FSH content in males was much higher than that in females during all seasons, and plasma FSH levels in males were high during the spawning season, whereas those in females were unchanged. In contrast, plasma and pituitary levels of LH were elevated before and during the spawning season in males and females. Injecting or implanting (cholesterol pellet) a GnRHa into adult and juvenile red seabream resulted in significant increases in plasma LH concentrations; however, no significant change was observed in plasma FSH. Moreover, GnRHa stimulated only LH secretion in an in vitro experiment using dispersed pituitary cells. The discrete FSH and LH secretion profiles revealed suggest differential roles for the two gonadotropins during red seabream gametogenesis. In addition, the marked difference in pituitary FSH levels in males and females suggests the relative significance of FSH in male reproduction.


Assuntos
Hormônio Foliculoestimulante/análise , Hormônio Liberador de Gonadotropina/fisiologia , Gonadotropinas/análise , Gonadotropinas/metabolismo , Dourada/metabolismo , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Gametogênese/fisiologia , Hormônio Luteinizante/análise , Hormônio Luteinizante/sangue , Masculino , Hipófise/metabolismo , Radioimunoensaio/métodos , Dourada/fisiologia , Estações do Ano , Maturidade Sexual/fisiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-25250485

RESUMO

Kisspeptin (Kiss) and its cognate receptor (Kiss1R), implicated in the neuroendocrine control of GnRH secretion in mammals, have been proposed to be the key factors in regulating puberty. However, the mechanisms underlying the initiation of puberty in fish are poorly understood. The chub mackerel Scomber japonicus expresses two forms of Kiss (kiss1 and kiss2) and two Kiss receptor (kissr1 and kissr2) genes in the brain, which exhibit sexually dimorphic changes during the seasonal reproductive cycle. This indicates that the kisspeptin system plays an important role in gonadal recrudescence of chub mackerel; however, the involvement of the kisspeptin system in the pubertal process has not been identified. In the present study, we examined the mRNA expression of kiss1, kiss2, kissr1, kissr2, and gnrh1 (hypophysiotropic form) in the brain of a chub mackerel during puberty. In male fish, kiss2, kissr1 and kissr2 levels increased significantly at 14weeks post-hatch (wph), synchronously with an increase in type A spermatogonial populations in the testis; kiss2 and gnrh1 levels significantly increased at 22wph, just before the onset of meiosis in the testes. In female fish, kiss2 increased significantly at 14wph, synchronously with an increase in the number of perinucleolar oocytes in the ovary; kiss1 and kiss2 levels significantly increased concomitantly with an increase in the kissr1, kissr2, and gnrh1 levels at 24wph, just before the onset of vitellogenesis in oocytes. The present results suggest positive involvement of the kisspeptin-GnRH system in the pubertal process in the captive reared chub mackerel.


Assuntos
Encéfalo/metabolismo , Hormônio Liberador de Gonadotropina/genética , Kisspeptinas/genética , Perciformes/genética , Receptores Acoplados a Proteínas G/genética , Maturidade Sexual/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hormônio Liberador de Gonadotropina/metabolismo , Gônadas/crescimento & desenvolvimento , Gônadas/metabolismo , Kisspeptinas/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores Acoplados a Proteínas G/metabolismo
9.
Neurosci Lett ; 561: 203-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24412259

RESUMO

In vertebrates (including teleosts), the pivotal hierarchical factor in the control of gonadotropin secretion is the hypothalamic gonadotropin-releasing hormone (GnRH) decapeptide, which regulates the release of pituitary follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Recently, kisspeptins encoded by the Kiss1 gene have been shown to act as upstream endogenous regulators of GnRH neurons in mammals. The chub mackerel (Scomber japonicus) brain expresses two kiss genes (kiss1 and kiss2) that show sexually dimorphic expression profiles during the seasonal gonadal cycle. In the present study, we evaluated the biological potency of kisspeptin peptides to induce transcriptional changes in gnrh1 (hypophysiotropic GnRH form in this species), fshß and lhß during the immature stage of adult chub mackerel (2+ years old). Synthetic Kiss1 pentadecapeptide (Kiss1-15) or Kiss2 dodecapeptide (Kiss2-12) at a dose of 100 ng were administered into the intracerebroventricular (ICV) region, and brains were sampled at 6 and 12 h post-injection. In female fish, gnrh1 levels decreased in the presence of both kisspeptin peptides at 12 h post-injection. No significant variation was observed in male fish. In contrast, ICV administration of Kiss2-12 (but not Kiss1-15) significantly increased fshß and lhß mRNAs at 12 h post-injection compared to a saline injected control in both sexes. These results suggested that synthetic Kiss2-12 could induce transcriptional changes in gnrh1 and gths.


Assuntos
Peixes/metabolismo , Kisspeptinas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Injeções Intraventriculares , Kisspeptinas/farmacologia , Hormônio Luteinizante Subunidade beta/genética , Hormônio Luteinizante Subunidade beta/metabolismo , Masculino , RNA Mensageiro/metabolismo , Fatores Sexuais , Transcrição Gênica
10.
Gen Comp Endocrinol ; 193: 130-40, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23932907

RESUMO

The kisspeptin receptor (Kiss1R) is a cognate receptor for kisspeptin (Kiss), and this Kiss-Kiss1R system has been shown to regulate seasonal reproduction in vertebrates. Our previous study found the chub mackerel (Scomber japonicus) brain expresses both kiss1 and kiss2 and exhibits sexually dimorphic changes during the seasonal reproductive cycle. The present study cloned two subtypes of kissr from the chub mackerel brain, and their signal transduction pathways to Kiss1 and Kiss2 were characterized in a mammalian cell line. Results of identification showed that kissr1 and kissr2 mRNAs encode 369 and 378 deduced amino acids, respectively, and share 52% similarity in amino acid sequences. In vitro functional analysis revealed that chub mackerel Kiss receptor signals are also preferentially transduced via the protein kinase C (PKC) rather than protein kinase A (PKA) pathway. Synthetic chub mackerel Kiss1-15 and Kiss2-12 peptides showed the highest potency for the activation of KissR1 and KissR2, respectively, stronger than their corresponding Kiss-10 peptides. Tissue distribution analyses indicated that both genes are highly expressed in the brain and that only kissr2 mRNA is expressed in the pituitary of both sexes. Unexpectedly, both kissr1 and kissr2 mRNAs were detected only in the testes. Seasonal expression changes showed higher expression levels of both kissr1 and kissr2 mRNAs in the brain of females during the early vitellogenic period; however, no significant differences were found in the brain of males. Pituitary kissr2 mRNA levels showed no significant variations. In the testes, the kissr1 mRNA expression level increased dramatically at spermiation compared with the immature and post-spawning periods. However, kissr2 mRNA levels in the testes did not vary significantly at different testicular stages. These results suggest that both kissr1 and kissr2 likely participate in the seasonal ovarian development of females, and thus in males, we propose a paracrine or autocrine role for kissr1 in testicular development.


Assuntos
Proteínas de Peixes/metabolismo , Perciformes/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Feminino , Proteínas de Peixes/genética , Kisspeptinas/metabolismo , Masculino , Perciformes/fisiologia , Receptores Acoplados a Proteínas G/genética , Reprodução/fisiologia , Testículo/metabolismo , Testículo/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-23774588

RESUMO

Kisspeptins, encoded by kiss genes, have emerged as critical regulator of reproductive function in vertebrates. Our previous studies demonstrated that the chub mackerel (Scomber japonicus) brain expresses kiss1 and kiss2 and peripheral administration of synthetic Kiss1 pentadecapeptide (Kiss1-15) but not Kiss2 dodecapeptide (Kiss2-12) induces spermiation in sexually immature adult chub mackerel. In the present study, we evaluated the potency of Kiss1-15, Kiss2-12, and GnRH analogue (GnRHa) to induce pubertal onset in prepubertal chub mackerel. Peptides were administered through subcutaneous injection for three times (bi-weekly) over 6weeks. Interestingly, gonadosomatic index (GSI) of Kiss1-15 treated fish increased significantly in comparison to other treatments. Histologically, 66.7% of Kiss1-15 treated fish exhibited presence of spermatozoa (SPZ) in the testes with only 28.6% of GnRHa treated fish. However, Kiss2-12 treated fish showed only spermatocytes (SC) as the advanced germ cells in the testes. In contrast, only spermatogonia (SPG) were observed in the testes of control fish. Changes in the number of testicular germ cells among treatments revealed a significantly higher number of SC, spermatids and SPZ in the Kiss1-15 treated fish. Gene expression analyses revealed no significant changes in gnrh1 in the telencephalon-preoptic region of the brain, including fshß and lhß in the pituitary of experimental fish. However, GnRHa treated fish showed significantly higher lhß expression. Levels of sex steroids, 11-ketotestosterone and estradiol-17ß were significantly higher in Kiss1-15 treated fish. These results indicate application of Kiss1-15 peptides for accelerating pubertal onset in chub mackerel.


Assuntos
Proteínas de Peixes/administração & dosagem , Kisspeptinas/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Perciformes/fisiologia , Espermatogênese/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Estradiol/sangue , Proteínas de Peixes/química , Injeções Subcutâneas , Kisspeptinas/química , Masculino , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Testículo/citologia , Testículo/efeitos dos fármacos , Testosterona/sangue
12.
Zoolog Sci ; 30(6): 446-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23721468

RESUMO

Kisspeptins have emerged as potent regulators of the reproductive brain-pituitary-gonad (BPG) axis. Our previous study demonstrated that the brain of the chub mackerel (Scomber japonicus), a scombroid fish, expresses two kisspeptin-encoding genes, kiss1 and kiss2, and exhibits sexually dimorphic expression profiles. Recent studies strongly suggest that teleost Kiss1 and Kiss2 precursors produce mature Kiss1-pentadecapeptides (Kiss1-15) and Kiss2-dodecapeptides (Kiss2-12), respectively. In light of the above, the present study evaluated the potency of synthetic peptides of Kiss1-15, Kiss2-12, and a GnRH analog (GnRHa) on inducing gonadal development in sexually immature adult chub mackerel. Synthetic peptides were administered subcutaneously through mini-osmotic pumps. On day 45 post-administration, gonadosomatic index (GSI) values (%) of male fish treated with Kiss1-15 (1.82) significantly increased in comparison to initial control (0.33), final control (0.49), Kiss2-12 (0.24), and GnRHa (1.13)-treated fish. Interestingly, the testis of all Kiss1-15 treated fish revealed spermiation, and were full of spermatozoa. These fish showed significantly higher levels of pituitary fshß and Ihß mRNAs and circulating 11-ketotestosterone. GnRHa treated fish also revealed the presence of few spermatozoa in the testis. In females, no significant changes in GSI values were found between treatments; however, Kiss1-15- and GnRHa-treated fish showed prominent signs of vitellogenic onset, with many early yolk oocytes in their ovaries. Interestingly, Kiss1-15-treated fish exhibited higher levels of pituitary fshß and circulating estradiol-17ß. These results indicate that peripheral administration of Kiss1-15 and GnRHa can induce gonadal development in sexually immature chub mackerel.


Assuntos
Kisspeptinas/farmacologia , Perciformes/crescimento & desenvolvimento , Maturidade Sexual/efeitos dos fármacos , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hormônios Esteroides Gonadais/genética , Hormônios Esteroides Gonadais/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Reprod Biol Endocrinol ; 10: 71, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22950645

RESUMO

BACKGROUND: The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs. METHODS: Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH) and LH (cmLH) were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Ε2) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles. RESULTS: Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM) in late-vitellogenic stage follicles. CONCLUSIONS: Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Hormônio Luteinizante/farmacologia , Perciformes/metabolismo , Hipófise/química , Animais , Estradiol/análise , Estradiol/biossíntese , Feminino , Hormônio Foliculoestimulante/isolamento & purificação , Hidroxiprogesteronas/análise , Hidroxiprogesteronas/metabolismo , Hormônio Luteinizante/isolamento & purificação , Folículo Ovariano/química , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Vitelogênese/efeitos dos fármacos
14.
Fish Physiol Biochem ; 38(3): 883-97, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22109677

RESUMO

The endocrine regulation of reproduction in a multiple spawning fish with an asynchronous-type ovary remains largely unknown. The objectives of this study were to monitor changes in the mRNA expression of three gonadotropin (GtH) subunits (GPα, FSHß, and LHß) during the reproductive cycle of the female chub mackerel Scomber japonicus. Cloning and subsequent sequence analysis revealed that the cDNAs of chub mackerel GPα, FSHß, and LHß were 658, 535, and 599 nucleotides in length and encoded 117, 115, and 147 amino acids, respectively. We applied a quantitative real-time PCR assay to quantify the mRNA expression levels of these GtH subunits. During the seasonal reproductive cycle, FSHß mRNA levels remained high during the vitellogenic stages, while GPα and LHß mRNA levels peaked at the end of vitellogenesis. The expression of all three GtH subunits decreased during the post-spawning period. These results suggest that follicle-stimulating hormone (FSH) is involved in vitellogenesis, while luteinizing hormone (LH) functions during final oocyte maturation (FOM). Both GPα and FSHß mRNA levels remained high during the FOM stages of the spawning cycle and increased further just after spawning. Thus, FSH synthesis may be strongly activated just after spawning to accelerate vitellogenesis in preparation for the next spawning. Alternatively, LHß mRNA levels declined during hydration and then increased after ovulation. This study demonstrates that chub mackerel are a good model for investigating GtH functions in multiple spawning fish.


Assuntos
Gonadotropinas Hipofisárias/genética , Perciformes/genética , Perciformes/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Regulação da Expressão Gênica , Subunidade alfa de Hormônios Glicoproteicos/genética , Gonadotropinas Hipofisárias/química , Hormônio Luteinizante Subunidade beta/genética , Masculino , Dados de Sequência Molecular , Ovário/fisiologia , Perciformes/anatomia & histologia , Filogenia , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodução/genética , Reprodução/fisiologia , Vitelogênese/genética , Vitelogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA