Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 39: 220-227, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986597

RESUMO

The metabolic byproducts secreted by growing cells can be easily measured and provide a window into the state of a cell; they have been essential to the development of microbiology, cancer biology, and biotechnology. Progress in computational modeling of cells has made it possible to predict metabolic byproduct secretion with bottom-up reconstructions of metabolic networks. However, owing to a lack of data, it has not been possible to validate these predictions across a wide range of strains and conditions. Through literature mining, we were able to generate a database of Escherichia coli strains and their experimentally measured byproduct secretions. We simulated these strains in six historical genome-scale models of E. coli, and we report that the predictive power of the models has increased as they have expanded in size and scope. The latest genome-scale model of metabolism correctly predicts byproduct secretion for 35/89 (39%) of designs. The next-generation genome-scale model of metabolism and gene expression (ME-model) correctly predicts byproduct secretion for 40/89 (45%) of designs, and we show that ME-model predictions could be further improved through kinetic parameterization. We analyze the failure modes of these simulations and discuss opportunities to improve prediction of byproduct secretion.


Assuntos
Biopolímeros/metabolismo , Mineração de Dados/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Análise do Fluxo Metabólico/métodos , Modelos Biológicos , Simulação por Computador , Regulação Bacteriana da Expressão Gênica/fisiologia , Publicações Periódicas como Assunto
2.
Nat Commun ; 5: 4910, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25222563

RESUMO

The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response to iron availability using genome-wide measurements. Integrative data analysis reveals that a total of 81 genes in 42 transcription units are directly regulated by three different modes of Fur regulation, including apo- and holo-Fur activation and holo-Fur repression. We show that Fur connects iron transport and utilization enzymes with negative-feedback loop pairs for iron homeostasis. In addition, direct involvement of Fur in the regulation of DNA synthesis, energy metabolism and biofilm development is found. These results show how Fur exhibits a comprehensive regulatory role affecting many fundamental cellular processes linked to iron metabolism in order to coordinate the overall response of E. coli to iron availability.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Genoma Bacteriano , Ferro/metabolismo , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Mapeamento Cromossômico , Cromossomos Bacterianos , Escherichia coli K12/metabolismo , Retroalimentação Fisiológica , Ligação Proteica , Regulon , Proteínas Repressoras/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA