Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 874: 162193, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36828069

RESUMO

Literature regarding microplastics in the atmosphere has advanced in recent years. However, studies have been undertaken in isolation with minimal collaboration and exploration of the relationships between air, deposition and dust. This review collates concentrations (particle count and mass-based), shape, size and polymetric characteristics for microplastics in ambient air (m3), deposition (m2/day), dust (microplastics/g) and snow (microplastics/L) from 124 peer-reviewed articles to provide a holistic overview and analysis of our current knowledge. In summary, ambient air featured concentrations between <1 to >1000 microplastics/m3 (outdoor) and <1 microplastic/m3 to 1583 ± 1181 (mean) microplastics/m3 (indoor), consisting of polyethylene terephthalate, polyethylene, polypropylene. No difference (p > 0.05) was observed between indoor and outdoor concentrations or the minimum size of microplastics (p > 0.5). Maximum microplastic sizes were larger indoors (p < 0.05). Deposition concentrations ranged between 0.5 and 1357 microplastics/m2/day (outdoor) and 475 to 19,600 microplastics/m2/day (indoor), including polyethylene, polystyrene, polypropylene, polyethylene terephthalate. Concentrations varied between indoor and outdoor deposition (p < 0.05), being more abundant indoors, potentially closer to sources/sinks. No difference was observed between the minimum or maximum reported microplastic sizes within indoor and outdoor deposition (p > 0.05). Road dust concentrations varied between 2 ± 2 and 477 microplastics/g (mean), consisting of polyvinyl chloride, polyethylene, polypropylene. Mean outdoor dust concentrations ranged from <1 microplastic/g (remote desert) to between 18 and 225 microplastics/g, comprised of polyethylene terephthalate, polyamide, polypropylene. Snow concentrations varied between 0.1 and 30,000 microplastics/L, containing polyethylene, polyamide, polypropylene. Concentrations within indoor dust varied between 10 and 67,000 microplastics/g, including polyethylene terephthalate, polyethylene, polypropylene. No difference was observed between indoor and outdoor concentrations (microplastics/g) or maximum size (p > 0.05). The minimum size of microplastics were smaller within outdoor dust (p > 0.05). Although comparability is hindered by differing sampling methods, analytical techniques, polymers investigated, spectral libraries and inconsistent terminology, this review provides a synopsis of knowledge to date regarding atmospheric microplastics.

2.
Sci Total Environ ; 811: 152382, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923004

RESUMO

This study investigated the occurrence and contribution of plastic particles associated with size fractionated biosolids to the total concentration in biosolids (treated sewage sludge) samples collected from 20 wastewater treatment plants (WWTP) across Australia. This was achieved through sequential size fractionation of biosolids samples to quantify the mass concentration of 7 common plastics across a range of biosolids size fractions, including below 25 µm which has not been assessed in many previous studies. Quantitative analysis was performed by pressurized liquid extraction followed by pyrolysis coupled to gas chromatography - mass spectrometry. Of the total quantified plastics (Σ7plastics), the greatest proportion (27%) of the total mass were identified in the nominal <25 µm sized biosolids fraction. Polyethylene dominated the polymer mass in every size fraction, even though profiles varied between WWTPs. When comparing the sum of all sites for each sized biosolids fraction, the plurality of the polyethylene, polyvinyl-chloride, polystyrene, polypropylene, polycarbonate, and polyethylene-terephthalate concentrations were associated with the smallest size fraction (<25 µm). We confirm for the first time the presence of plastic particles in biosolids below a size fraction that is not captured by many methods. This is important, because of the potential greater significance of plastics in the low sizes to environmental and human health.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Biossólidos , Humanos , Plásticos , Pirólise , Esgotos , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 796: 148835, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34280630

RESUMO

The influence of photo-oxidation on the quantification of isotactic polypropylene by Pyrolysis Gas Chromatography/Mass Spectrometry (Pyr-GC/MS) was assessed. Beads (oval shape, ~5 mm) and fragments (irregular shaped, 250-50 µm and 500-1000 µm) were subjected to relatively harsh simulated accelerated weathering conditions (using a filtered xenon-arc reproducing sunlight's full spectrum) for up to 37 and 80 days, respectively. Samples collected (n = 10 replicates for each treatment) at increasing number of weathering days were analysed by Fourier-transform infrared spectroscopy with Attenuated Total Reflection (FTIR-ATR), scanning electron microscopy, and differential scanning calorimetry in order to assess the extent and the rate of degradation. The rate of surface oxidation occurred faster for fragments compared to beads, probably due to their higher surface area. Quantification of the polypropylene trimer (2,4-dimethyl-1-heptene) via double shot Pyr-GC/MS, showed that the signal of the trimer relative to the mass of polypropylene was reduced through weathering with a degradation rate of 1:3 faster for fragments over beads. Signal reduction and carbonyl index were correlated to show that polypropylene with a carbonyl index of ≥13 has a significantly reduced 2,4-dimethyl-1-heptene signal when compared to virgin material. Consequently, the quantification of polypropylene subjected to weathering under harsh conditions may be underestimated by 42% (fragments, carbonyl index: 18) to 49% (beads, carbonyl index: 30) when quantified by Pyr-GC/MS and using virgin polypropylene calibration standards. Pyrolysis at a lower temperature (350 °C) identified six degradation specific markers (oxidation products) that increased in concentration with weathering. Further comparisons between virgin and weathered microplastics may need to be considered to avoid underestimation of microplastic concentrations in future studies.


Assuntos
Microplásticos , Plásticos , Cromatografia Gasosa-Espectrometria de Massas , Polipropilenos , Pirólise
4.
J Hazard Mater ; 416: 125811, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892382

RESUMO

Microplastics (1 - 5000 µm) are pervasive in every compartment of our environment. However, little is understood regarding the concentration and size distribution of microplastics in road dust, and how they change in relation to human activity. Within road dust, microplastics move through the environment via atmospheric transportation and stormwater run-off into waterways. Human exposure pathways to road dust include dermal contact, inhalation and ingestion. In this study, road dust along an urban to rural transect within South-East Queensland, Australia was analysed using Accelerated Solvent Extraction followed by pyrolysis Gas Chromatography-Mass Spectrometry (Pyr-GC/MS). Polypropylene, polystyrene, polyethylene terephthalate, polyvinyl chloride, poly (methyl methacrylate) and polyethylene were quantified. Microplastic concentrations ranged from ~0.5 mg/g (rural site) to 6 mg/g (Brisbane city), consisting primarily of polyvinyl chloride (29%) and polyethylene terephthalate (29%). Size fractionation (< 250 µm, 250-500 µm, 500-1000 µm, 1000-2000 µm and 2000-5000 µm) established that the < 250 µm size fraction contained the majority of microplastics by mass (mg/g). Microplastic concentrations in road dust demonstrated a significant relationship with the volume of vehicles (r2 = 0.63), suggesting traffic, as a proxy for human movement, is associated with increased microplastic concentrations in the built environment.


Assuntos
Poeira , Microplásticos , Austrália , Cidades , Poeira/análise , Monitoramento Ambiental , Humanos , Plásticos
7.
Environ Sci Technol ; 54(15): 9408-9417, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32644808

RESUMO

Microplastic contamination of the marine environment is widespread, but the extent to which the marine food web is contaminated is not yet known. The aims of this study were to go beyond visual identification techniques and develop and apply a simple seafood sample cleanup, extraction, and quantitative analysis method using pyrolysis gas chromatography mass spectrometry to improve the detection of plastic contamination. This method allows the identification and quantification of polystyrene, polyethylene, polyvinyl chloride, polypropylene, and poly(methyl methacrylate) in the edible portion of five different seafood organisms: oysters, prawns, squid, crabs, and sardines. Polyvinyl chloride was detected in all samples and polyethylene at the highest total concentration of between 0.04 and 2.4 mg g-1 of tissue. Sardines contained the highest total plastic mass concentration (0.3 mg g-1 tissue) and squid the lowest (0.04 mg g-1 tissue). Our findings show that the total concentration of plastics is highly variable among species and that microplastic concentration differs between organisms of the same species. The sources of microplastic exposure, such as packaging and handling with consequent transference and adherence to the tissues, are discussed. This method is a major development in the standardization of plastic quantification techniques used in seafood.


Assuntos
Plásticos , Poluentes Químicos da Água , Austrália , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Pirólise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 715: 136924, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007891

RESUMO

The identification and quantification of selected plastics (polystyrene (PS), polycarbonate (PC), poly-(methyl methacrylate) (PMMA), polypropylene (PP), polyethylene terephthalate (PET), polyethylene (PE) and polyvinyl chloride (PVC)) in biosolids (treated sewage sludge) was performed by pressurized liquid extraction (PLE) combined with double-shot pyrolysis gas chromatography-mass spectrometry. Validation of the method yielded recoveries of between 85 and 128% (mean RSD 11%) at a linear range of between 0.01 and 2 µg. The distribution of plastics within 25 biosolid samples from a single wastewater treatment plant in Australia was assessed. The mass concentration of PE, PVC, PP, PS and PMMA was between 0.1 and 4.1 mg/g dry weight (dw) across all samples, with a total plastic concentration Æ©Plastics of between 2.8 and 6.6 mg/g dw (median = 4.1 mg/g dw). PE was the predominant plastic detected (mean concentration of 2.2 mg/g dw), contributing to 50% of the total of all plastics. Overall, this study demonstrates that pressurized liquid extraction (PLE) combined with double-shot pyrolysis gas chromatography-mass spectrometry can be used to identify and quantify PE, PP, PVC, PS, and PMMA in biosolids.


Assuntos
Plásticos/análise , Austrália , Biossólidos , Cromatografia Gasosa-Espectrometria de Massas , Pirólise , Esgotos
9.
J Sep Sci ; 40(17): 3545-3556, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28683184

RESUMO

A comparison of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography for the separation of synthetic cathinones has been conducted. Nine different mixtures of bath salts were analyzed in this study. The three different chromatographic techniques were examined using a general set of controlled synthetic cathinones as well as a variety of other synthetic cathinones that exist as positional isomers. Overall 35 different synthetic cathinones were analyzed. A variety of column types and chromatographic modes were examined for developing each separation. For the ultra high performance supercritical fluid chromatography separations, analyses were performed using a series of Torus and Trefoil columns with either ammonium formate or ammonium hydroxide as additives, and methanol, ethanol or isopropanol organic solvents as modifiers. Ultra high performance liquid chromatographic separations were performed in both reversed phase and hydrophilic interaction chromatographic modes using SPP C18 and SPP HILIC columns. Gas chromatography separations were performed using an Elite-5MS capillary column. The orthogonality of ultra high performance supercritical fluid chromatography, ultra high performance liquid chromatography, and gas chromatography was examined using principal component analysis. For the best overall separation of synthetic cathinones, the use of ultra high performance supercritical fluid chromatography in combination with gas chromatography is recommended.

10.
Am Surg ; 80(5): 461-5, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24887724

RESUMO

Breast cancer is the leading cancer affecting women in America. Body mass index (BMI) is a known risk factor for the development of breast cancer. The relationship of BMI to benign breast disease is less clear. In addition, certain benign pathologies are associated with an increased risk of cancer. We sought to measure the incidence of benign pathologies and to correlate these findings with BMI and age. All patients undergoing breast biopsy at our center from 2000 to 2005 were identified (n = 1717). Age, BMI, family history, sex, and diagnosis were determined. Patients were grouped into BMI, age, and intervention groups. χ(2) (P < 0.05) was used to identify statistical significance. Fibrocystic disease and fibroadenoma were seen with a lower incidence for patients older than 55 years of age, whereas pathologies requiring further surgical intervention were seen in higher proportions in patients older than 55 years of age. All pathologies were noted to decrease with increasing BMI, except for fibroadenoma, which peaked in BMI group 25 to 29.9 kg/m(2). The presence of benign pathologies was associated with age as expected. Interestingly, although BMI is associated with increased risk of breast cancer, increasing BMI was not associated with benign pathologies that are associated with increased risk of breast cancer. Further study of this area is warranted.


Assuntos
Índice de Massa Corporal , Doenças Mamárias/etiologia , Obesidade/complicações , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doenças Mamárias/epidemiologia , Feminino , Humanos , Incidência , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA