Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 17003, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417525

RESUMO

Several studies reported that mitochondrial stress induces cytosolic proteostasis in yeast and C. elegans. Notably, inhibition of mitochondrial translation with doxcycyline decreases the toxicity of ß-amyloid aggregates, in a C. elegans. However, how mitochondrial stress activates cytosolic proteostasis remains unclear. Further whether doxycycline has this effect in mammals and in disease relevant tissues also remains unclear. We show here that doxycycline treatment in mice drastically reduces the accumulation of proteins destined for degradation by the proteasome in a CNS region-specific manner. This effect is associated with the activation of the ERα axis of the mitochondrial unfolded protein response (UPRmt), in both males and females. However, sexually dimorphic mechanisms of proteasome activation were observed. Doxycycline also activates the proteasome in fission yeast, where ERα is not expressed. Rather, the ancient ERα-coactivator Mms19 regulates this response in yeast. Our results suggest that the UPRmt initiates a conserved mitochondria-to-cytosol stress signal, resulting in proteasome activation, and that this signal has adapted during evolution, in a sex and tissue specific-manner. Therefore, while our results support the use of doxycycline in the prevention of proteopathic diseases, they also indicate that sex is an important variable to consider in the design of future clinical trials using doxycycline.


Assuntos
Sistema Nervoso Central/metabolismo , Doxiciclina/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Sistema Nervoso Central/efeitos dos fármacos , AMP Cíclico/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
2.
Elife ; 62017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28718400

RESUMO

Recurrent somatic mutations of H3F3A in aggressive pediatric high-grade gliomas generate K27M or G34R/V mutant histone H3.3. H3.3-G34R/V mutants are common in tumors with mutations in p53 and ATRX, an H3.3-specific chromatin remodeler. To gain insight into the role of H3-G34R, we generated fission yeast that express only the mutant histone H3. H3-G34R specifically reduces H3K36 tri-methylation and H3K36 acetylation, and mutants show partial transcriptional overlap with set2 deletions. H3-G34R mutants exhibit genomic instability and increased replication stress, including slowed replication fork restart, although DNA replication checkpoints are functional. H3-G34R mutants are defective for DNA damage repair by homologous recombination (HR), and have altered HR protein dynamics in both damaged and untreated cells. These data suggest H3-G34R slows resolution of HR-mediated repair and that unresolved replication intermediates impair chromosome segregation. This analysis of H3-G34R mutant fission yeast provides mechanistic insight into how G34R mutation may promote genomic instability in glioma.


Assuntos
Replicação do DNA , Instabilidade Genômica , Histonas/metabolismo , Recombinação Homóloga , Proteínas Mutantes/metabolismo , Schizosaccharomyces/metabolismo , Reparo do DNA , Histonas/genética , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Schizosaccharomyces/genética
3.
Mol Biol Cell ; 27(25): 4002-4010, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798241

RESUMO

Eukaryotes contain three essential Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin, and Smc5/6. Cohesin forms a ring-shaped structure that embraces sister chromatids to promote their cohesion. The cohesiveness of cohesin is promoted by acetylation of N-terminal lysines of the Smc3 subunit by the acetyltransferases Eco1 in Saccharomyces cerevisiae and the homologue, Eso1, in Schizosaccharomyces pombe. In both yeasts, these acetyltransferases are essential for cell viability. However, whereas nonacetylatable Smc3 mutants are lethal in S. cerevisiae, they are not in S. pombe We show that the lethality of a temperature-sensitive allele of eso1 (eso1-H17) is due to activation of the spindle assembly checkpoint (SAC) and is associated with premature centromere separation. The lack of cohesion at the centromeres does not correlate with Psm3 acetylation or cohesin levels at the centromeres, but is associated ith significantly reduced recruitment of the cohesin regulator Pds5. The SAC activation in this context is dependent on Smc5/6 function, which is required to remove cohesin from chromosome arms but not centromeres. The mitotic defects caused by Smc5/6 and Eso1 dysfunction are cosuppressed in double mutants. This identifies a novel function (or functions) for Eso1 and Smc5/6 at centromeres and extends the functional relationships between these SMC complexes.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/enzimologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Acetiltransferases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/genética , Cromátides/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/genética , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
4.
Mol Cell Oncol ; 2(1): e970065, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27308403

RESUMO

DNA is subject to a wide variety of damage. In order to maintain genomic integrity, cells must respond to this damage by activating repair and cell cycle checkpoint pathways. The initiating events in the DNA damage response entail recognition of the lesion and the assembly of DNA damage response complexes at the DNA. Here, we review what is known about these processes for various DNA damage pathways.

5.
Methods Mol Biol ; 1170: 29-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24906307

RESUMO

Cell cycle checkpoints are surveillance mechanisms that monitor the order, integrity, and fidelity of the major events of the cell cycle. These include growth to the appropriate cell size, the replication and integrity of the chromosomes, and their accurate segregation at mitosis. Many of these mechanisms are ancient in origin and highly conserved, and hence have been heavily informed by studies in simple organisms such as the yeasts. Others have evolved in higher organisms, and control alternative cell fates with significant impact on tumor suppression. Here, we consider these different checkpoint pathways and the consequences of their dysfunction on cell fate.


Assuntos
Pontos de Checagem do Ciclo Celular , Instabilidade Genômica , Ciclo Celular , Tamanho Celular , Dano ao DNA , Reparo do DNA , Replicação do DNA , Humanos , Mitose , Leveduras/citologia , Leveduras/genética
6.
Cell Cycle ; 12(6): 916-22, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23422000

RESUMO

Chk1 is the effector kinase of the G 2 DNA damage checkpoint. Chk1 homologs possess a highly conserved N-terminal kinase domain and a less conserved C-terminal regulatory domain. In response to DNA damage, Chk1 is recruited to mediator proteins assembled at lesions on replication protein A (RPA)-coated single-stranded DNA (ssDNA). Chk1 is then activated by phosphorylation on S345 in the C-terminal regulatory domain by the PI3 kinase-related kinases ATM and ATR to enforce a G 2 cell cycle arrest to allow time for DNA repair. Models have emerged in which this C-terminal phosphorylation relieves auto-inhibitory regulation of the kinase domain by the regulatory domain. However, experiments in fission yeast have shown that deletion of this putative auto-inhibitory domain actually inactivates Chk1 function. We show here that Chk1 homologs possess a kinase-associated 1 (KA1) domain that possesses residues previously implicated in Chk1 auto-inhibition. In addition, all Chk1 homologs have a small and highly conserved C-terminal extension (CTE domain). In fission yeast, both of these motifs are essential for Chk1 activation through interaction with the mediator protein Crb2, the homolog of human 53BP1. Thus, through different intra- and intermolecular interactions, these motifs explain why the regulatory domain exerts both positive and negative control over Chk1 activation. Such motifs may provide alternative targets to the ATP-binding pocket on which to dock Chk1 inhibitors as anticancer therapeutics.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Quinase 1 do Ponto de Checagem , Dano ao DNA , Reparo do DNA , Ativação Enzimática , Dados de Sequência Molecular , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Estrutura Terciária de Proteína , Proteína de Replicação A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Transdução de Sinais
7.
J Cell Sci ; 125(Pt 11): 2753-64, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22366461

RESUMO

BRCT-containing protein 1 (Brc1) is a multi-BRCT (BRCA1 carboxyl terminus) domain protein in Schizosaccharomyces pombe that is required for resistance to chronic replicative stress, but whether this reflects a repair or replication defect is unknown and the subject of this study. We show that brc1Δ cells are significantly delayed in recovery from replication pausing, though this does not activate a DNA damage checkpoint. DNA repair and recombination protein Rad52 is a homologous recombination protein that loads the Rad51 recombinase at resected double-stranded DNA (dsDNA) breaks and is also recruited to stalled replication forks, where it may stabilize structures through its strand annealing activity. Rad52 is required for the viability of brc1Δ cells, and brc1Δ cells accumulate Rad52 foci late in S phase that are potentiated by replication stress. However, these foci contain the single-stranded DNA (ssDNA) binding protein RPA, but not Rad51 or γH2A. Further, these foci are not associated with increased recombination between repeated sequences, or increased post-replication repair. Thus, these Rad52 foci do not represent sites of recombination. Following the initiation of DNA replication, the induction of these foci by replication stress is suppressed by defects in origin recognition complex (ORC) function, which is accompanied by loss of viability and severe mitotic defects. This suggests that cells lacking Brc1 undergo an ORC-dependent rescue of replication stress, presumably through the firing of dormant origins, and this generates RPA-coated ssDNA and recruits Rad52. However, as Rad51 is not recruited, and the checkpoint effector kinase Chk1 is not activated, these structures must not contain the unprotected primer ends found at sites of DNA damage that are required for recombination and checkpoint activation.


Assuntos
Replicação do DNA , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Estresse Fisiológico , Replicação do DNA/efeitos dos fármacos , DNA Ribossômico/metabolismo , Hidroxiureia/farmacologia , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Mutação/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Recombinação Genética/genética , Proteína de Replicação A/metabolismo , Fase S/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
8.
Mol Biol Cell ; 22(23): 4669-82, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976700

RESUMO

Of the three structural maintenance of chromosomes (SMC) complexes, Smc5/6 remains the most poorly understood. Genetic studies have shown that Smc5/6 mutants are defective in homologous recombination (HR), and consistent with this, Smc5/6 is enriched at lesions. However, Smc5/6 is essential for viability, but HR is not, and the terminal phenotype of null Smc5/6 mutants is mitotic failure. Here we analyze the function of Nse1, which contains a variant RING domain that is characteristic of ubiquitin ligases. Whereas deletion of this domain causes DNA damage sensitivity and mitotic failure, serine mutations in conserved cysteines do not. However, these mutations suppress the DNA damage sensitivity of Smc5/6 hypomorphs but not that of HR mutants and remarkably decrease the recruitment of Smc5/6 to loci containing lesions marked for HR-mediated repair. Analysis of DNA repair pathways in suppressed double mutants suggests that lesions are channeled into recombination-dependent and error-free postreplication repair. Thus the HR defect in Smc5/6 mutants appears to be due to the presence of dysfunctional complexes at lesions rather than to reflect an absolute requirement for Smc5/6 to complete HR.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Reparo do DNA , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cisteína/genética , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga , Mitose , Proteínas Nucleares/genética , Mutação Puntual , Estrutura Terciária de Proteína , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Fase S/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Serina/genética
9.
Methods Mol Biol ; 782: 23-31, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870282

RESUMO

In response to post-replicative DNA damage, cells activate the G2 DNA damage checkpoint to ensure mitosis is not attempted until the damage has been repaired. This is a common response to a variety of DNA damaging agents, including ionizing radiation and many chemotherapeutic agents used in the treatment of cancer. The G2 DNA damage checkpoint acts to inhibit the mitotic cyclin-dependent kinase, and thus cells are arrested in the G2 phase of the cell cycle. The kinetics of this checkpoint can be assayed by staining cells for markers of mitosis, which can then be quantified by flow cytometry or microscopy.


Assuntos
Dano ao DNA/genética , Fase G2/genética , Linhagem Celular , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Mitose/genética
10.
Methods Mol Biol ; 782: 171-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870291

RESUMO

Attempts to passage through mitosis with unrepaired DNA damage or incompletely replicated DNA leads to genome instability and/or cell death. To prevent this from occurring, an ancient checkpoint (known as the G2 DNA damage checkpoint) that inhibits the activation of the mitotic cyclin-dependent kinase is activated to hold cells in the G2 phase of the cell cycle. The effector of this checkpoint is Chk1, a protein serine-threonine kinase. Chk1 contains an N-terminal catalytic domain, and C-terminal regulatory domain. Within the regulatory domain there are two residues, Serine-317 (S317) and Serine-345 (S345), which are phosphorylated in active Chk1 molecules, and subsequently dephosphorylated to inactivate Chk1 and allow mitotic entry. Phospho-specific antibodies can be used to detect these activating phosphorylations, and this provides a simple and sensitive marker of Chk1 activation.


Assuntos
Proteínas Quinases/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Quinase 1 do Ponto de Checagem , Dano ao DNA/genética , Dano ao DNA/fisiologia , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Fosforilação , Proteínas Quinases/genética
11.
Cancer Biol Ther ; 8(15): 1433-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19574738

RESUMO

The maintenance of genomic integrity is important in normal cell growth and organism development, as well as in the prevention of cancer. Cell cycle checkpoints allow the cell time to complete replication and repair DNA damage before it can pass to the next cell cycle stage. These checkpoints ensure faithful segregation of one undamaged copy of the genome to each daughter cell. In humans, a DNA damage-based checkpoint signal in G(1) is propagated through activation of the tumor suppressor p53, which is mutated in many cancers. Chk1, a serine/threonine kinase, controls checkpoint responses in G(2). Chk1 is activated by the concerted action of many upstream proteins and prevents a cell from entering mitosis with damaged or incompletely replicated DNA. This checkpoint is conserved from the fission yeast, Schizosaccharomyces pombe through to humans. However, unlike p53, G(2) checkpoint genes are rarely if ever mutated in cancer cells. This suggests that these genes are essential for tumor cell viability and may represent valid anti-cancer drug targets. This review will describe the current understanding of the G(2) checkpoint including how the human biology has been informed by studies in fission yeast. It will also discuss the present status and future of potential cancer therapies aimed at inactivating this signaling pathway in tumor cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Fase G2/fisiologia , Genes cdc , Neoplasias/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Evolução Biológica , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Sequência Conservada , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Sistemas de Liberação de Medicamentos , Fase G2/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Proteína de Replicação A/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Especificidade da Espécie , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia , Estaurosporina/uso terapêutico
12.
J Biol Chem ; 283(25): 17605-14, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18397884

RESUMO

TIP60 (HTATIP) is a histone acetyltransferase (HAT) whose function is critical in regulating ataxia-telangiectasia mutated (ATM) activation, gene expression, and chromatin acetylation in DNA repair. Here we show that under non-stressed conditions, activating transcription factor-2 (ATF2) in cooperation with Cul3 ubiquitin ligase promotes degradation of TIP60, thereby attenuating its HAT activity. Inhibiting either ATF2 or Cul3 expression by small interfering RNA stabilizes the TIP60 protein. ATF2 association with TIP60 on chromatin is decreased following exposure to ionizing radiation (IR), resulting in enhanced TIP60 stability and activity. We also identified a panel of melanoma and prostate cancer cell lines whose ATF2 expression is inversely correlated with TIP60 levels and ATM activation after IR. Inhibition of ATF2 expression in these lines restored TIP60 protein levels and both basal and IR-induced levels of ATM activity. Our study provides novel insight into regulation of ATM activation by ATF2-dependent control of TIP60 stability and activity.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Histona Acetiltransferases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Culina/metabolismo , Dano ao DNA , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Modelos Biológicos , Modelos Genéticos , Ligação Proteica , Interferência de RNA
13.
Mol Cell Biol ; 27(21): 7615-22, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17785450

RESUMO

Skp2B, an F-box protein of unknown function, is frequently overexpressed in breast cancer. In order to determine the function of Skp2B and whether it has a role in breast cancer, we performed a two-hybrid screen and established transgenic mice expressing Skp2B in the mammary glands. We found that Skp2B interacts with the repressor of estrogen receptor activity (REA) and that overexpression of Skp2B leads to a reduction in REA levels. In the mammary glands of MMTV-Skp2B mice, REA levels are also low. Our results show that in virgin transgenic females, Skp2B induces lobuloalveolar development and differentiation of the mammary glands normally observed during pregnancy. As this phenotype is identical to what was observed for REA heterozygote mice, our observations suggest that the Skp2B-REA interaction is physiologically relevant. However, in contrast to REA(+/-) mice, MMTV-Skp2B mice develop mammary tumors, suggesting that Skp2B affects additional proteins. These results indicate that the observed expression of Skp2B in breast cancer does contribute to tumorigenesis at least in part by modulating the activity of the estrogen receptor.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Receptores de Estrogênio/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Diferenciação Celular , Cistos/patologia , Feminino , Humanos , Hiperplasia , Glândulas Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo , Camundongos , Camundongos Transgênicos , Neoplasias/patologia , Proibitinas , Ligação Proteica , Receptores de Estrogênio/genética , Comportamento Sexual , Maturidade Sexual , Transcrição Gênica , Ubiquitina/metabolismo
14.
J Natl Cancer Inst ; 98(17): 1238-47, 2006 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-16954476

RESUMO

BACKGROUND: Cyclin D1 is frequently overexpressed in breast cancer, and its overexpression is, surprisingly, associated with improved survival. One potential mechanism for this association involves signal transducer and activator of transcription 3 (STAT3). METHODS: Cyclin D1 and STAT3 expression were assessed in human tumors using microarray analysis and in breast cancer cell lines HBL100, T47D, MCF7, MDA-MB-453, and BT20 and in HBL100 and T47D cells stably overexpressing cyclin D1 using immunoblot analysis. Cyclin D1 protein was stabilized by treatment with the proteasome inhibitor bortezomib, and the effects on STAT3 expression in vitro was determined by using immunoblotting and on xenograft tumor growth and apoptosis in vivo was determined by using terminal deoxyuridine nick-end labeling assays. All statistical tests were two-sided. RESULTS: Tumors with high cyclin D1 expression (n = 17) had low STAT3 expression (mean = 274 arbitrary units), and those with low cyclin D1 expression (n = 31) had high STAT3 expression (mean = 882 arbitrary units) (P<.001). In HBL100 and T47D parental and cyclin D1-overexpressing cells, cyclin D1 overexpression was also inversely associated with STAT3 expression, and cyclin D1 directly reduced the expression of STAT3. Stabilization of cyclin D1 protein by bortezomib treatment further amplified the cyclin D1-dependent repression of STAT3 in vitro and slowed tumor growth in vivo (week 7: untreated mean = 185.7 mm3 versus treated mean = 136.2 mm3, difference = 49.5 mm3, 95% confidence interval [CI] = 18 to 81 mm3, P = .007; week 8: untreated mean = 240.2 mm3 versus treated mean = 157.3 mm3, difference = 82.9 mm3, 95% CI = 9.1 to 156.7 mm3, P = .0014; and week 9: untreated mean = 256.4 mm3 versus treated mean = 170.2 mm3, difference = 86.2 mm3, 95% CI = 22.8 to 149.6 mm3, P = .006) and increased apoptosis (untreated mean = 19% versus treated mean = 54%, difference = 35%, 95% CI = 24.7% to 45.4%; P = .013) of xenograft tumors. CONCLUSIONS: Cyclin D1 repression of STAT3 expression may explain the association between cyclin D1 overexpression and improved outcome in breast cancer. In addition, bortezomib can amplify the proapoptotic function of cyclin D1, raising the possibility that cyclin D1 levels may be a marker for predicting the response to this novel drug.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Ácidos Borônicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclina D1/metabolismo , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bortezomib , Cálcio/metabolismo , Caspase 3 , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/efeitos dos fármacos , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Análise em Microsséries , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Transplante Heterólogo , Regulação para Cima/efeitos dos fármacos , Proteína bcl-X/metabolismo
15.
J Cell Sci ; 118(Pt 1): 1-6, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15615778

RESUMO

Cells mount a coordinated response to DNA damage, activating DNA repair pathways and cell-cycle checkpoint pathways to allow time for DNA repair to occur. In human cells, checkpoint responses can be divided into p53-dependent and p53-independent pathways, the latter being predominant in G2 phase of the cell cycle. The p53-independent pathway involves a phosphorylation cascade that activates the Chk1 effector kinase and induces G2 arrest through inhibitory tyrosine phosphorylation of Cdc2. At the top of this cascade are the ATR and ATM kinases. How ATM and ATR recognize DNA damage and activate this checkpoint pathway is only beginning to emerge. Single-stranded DNA, a result of stalled DNA replication or processing of chromosomal lesions, appears to be central to the activation of ATR. The recruitment of replication protein A to single-stranded DNA facilitates the recruitment of several complexes of checkpoint proteins. In this context, ATR is activated and then phosphorylates the C-terminus of Chk1, activating it to enforce a block to mitotic entry.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Fase G2 , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Dano ao DNA , Proteínas de Ligação a DNA/genética , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
16.
Clin Cancer Res ; 9(5): 1877-84, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12738746

RESUMO

PURPOSE: Fenretinide has shown promise in the chemoprevention of breast cancer, a tumor type in which the oncogene cyclin D1 is overexpressed frequently. We aimed at determining the effect of cyclin D1 level on the response to fenretinide treatment. EXPERIMENTAL DESIGN: Stable clones of T47-D cells were created to overexpress cyclin D1 or a mutant of cyclin D1, injected in nude mice for xenograft formation, and the rate of tumor growth and tumor regression determined. RESULTS: We show here that cells overexpressing cyclin D1 are significantly more sensitive to fenretinide than genetically matched cells that express low levels of cyclin D1, and that fenretinide prevents tumor formation arising from cyclin D1-overexpressing cells. Furthermore, we show that fenretinide is also able to promote the regression of cyclin D1-positive tumors. We also show that cells expressing a mutant of cyclin D1 that cannot bind to cdk4 are also more sensitive to fenretinide. CONCLUSIONS: These results suggest that fenretinide may be particularly useful in the treatment of cyclin D1-positive breast cancers, and that the interaction between cyclin D1 and fenretinide is independent of cyclin D1 binding to cdk4.


Assuntos
Antineoplásicos/uso terapêutico , Ciclina D1/genética , Fenretinida/uso terapêutico , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Animais , Apoptose , Divisão Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Dosagem de Genes , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Taxa de Sobrevida , Transplante Heterólogo , Células Tumorais Cultivadas
17.
Int Rev Cytol ; 222: 99-140, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12503848

RESUMO

Cellular reproduction, at its basic level, is simply the passing of genetic information from a single parent cell into two daughter cells. As the cellular genome encodes all the information that defines a cell, it is crucial that the genome be accurately replicated. Furthermore, the duplicated genome must be properly segregated so that each daughter cell contains the exact same information as the parent cell. The processes by which this occurs is known as the cell cycle. The failure of either duplication or segregation of the genome can have disastrous consequences for an organism, including cancer and death. This article discusses what is known about checkpoints, the surveillance mechanisms that monitor both the fidelity and accuracy of DNA replication and segregation. Specifically, we will focus on the G2 checkpoint that is responsible for ensuring proper segregation of the duplicated genome into the daughter cells and how this checkpoint functions to arrest entry into mitosis in response to DNA damage.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA , Fase G2 , Proteínas de Schizosaccharomyces pombe , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA , Endonucleases/genética , Endonucleases/metabolismo , Células Eucarióticas/citologia , Fase G2/genética , Fase G2/fisiologia , Genes cdc , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais
18.
Mol Cell Biol ; 22(23): 8155-64, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12417719

RESUMO

Overexpression studies have suggested that Siah1 proteins may act as effectors of p53-mediated cellular responses and as regulators of mitotic progression. We have tested these hypotheses using Siah gene knockout mice. Siah1a and Siah1b were not induced by activation of endogenous p53 in tissues, primary murine embryonic fibroblasts (MEFs) or thymocytes. Furthermore, primary MEFs lacking Siah1a, Siah1b, Siah2, or both Siah2 and Siah1a displayed normal cell cycle progression, proliferation, p53-mediated senescence, and G(1) phase cell cycle arrest. Primary thymocytes deficient for Siah1a, Siah2, or both Siah2 and Siah1a, E1A-transformed MEFs lacking Siah1a, Siah1b, or Siah2, and Siah1b-null ES cells all underwent normal p53-mediated apoptosis. Finally, inhibition of Siah1b expression in Siah2 Siah1a double-mutant cells failed to inhibit cell division, p53-mediated induction of p21 expression, or cell cycle arrest. Our loss-of-function experiments do not support a general role for Siah genes in p53-mediated responses or mitosis.


Assuntos
Ciclo Celular/fisiologia , Proteínas Nucleares/genética , Proteínas , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Ciclinas/metabolismo , Doxorrubicina/farmacologia , Embrião de Mamíferos/anatomia & histologia , Éxons/genética , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica , Marcação de Genes , Humanos , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Células-Tronco/fisiologia , Timo/citologia , Timo/efeitos dos fármacos , Timo/fisiologia , Timo/efeitos da radiação , Ubiquitina-Proteína Ligases
19.
Genome Biol ; 3(2): REVIEWS3003, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11864377

RESUMO

SUMMARY: The structural maintenance of chromosomes (SMC) proteins are essential for successful chromosome transmission during replication and segregation of the genome in all organisms. SMCs are generally present as single proteins in bacteria, and as at least six distinct proteins in eukaryotes. The proteins range in size from approximately 110 to 170 kDa, and each has five distinct domains: amino- and carboxy-terminal globular domains, which contain sequences characteristic of ATPases, two coiled-coil regions separating the terminal domains and a central flexible hinge. SMC proteins function together with other proteins in a range of chromosomal transactions, including chromosome condensation, sister-chromatid cohesion, recombination, DNA repair and epigenetic silencing of gene expression. Recent studies are beginning to decipher molecular details of how these processes are carried out.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromossomos/genética , Sequência Conservada/genética , Família Multigênica/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiologia , Evolução Molecular , Humanos , Dados de Sequência Molecular , Estrutura Quaternária de Proteína/genética , Estrutura Quaternária de Proteína/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA