RESUMO
Approximately 70% of breast cancers express estrogen receptor α (ERα) and depend on this key transcriptional regulator for proliferation and differentiation. While patients with this disease can be treated with targeted antiendocrine agents, drug resistance remains a significant issue, with almost half of patients ultimately relapsing. Elucidating the mechanisms that control ERα function may further our understanding of breast carcinogenesis and reveal new therapeutic opportunities. Here, we investigated the role of deubiquitinases (DUB) in regulating ERα in breast cancer. An RNAi loss-of-function screen in breast cancer cells targeting all DUBs identified USP11 as a regulator of ERα transcriptional activity, which was further validated by assessment of direct transcriptional targets of ERα. USP11 expression was induced by estradiol, an effect that was blocked by tamoxifen and not observed in ERα-negative cells. Mass spectrometry revealed a significant change to the proteome and ubiquitinome in USP11-knockdown (KD) cells in the presence of estradiol. RNA sequencing in LCC1 USP11-KD cells revealed significant suppression of cell-cycle-associated and ERα target genes, phenotypes that were not observed in LCC9 USP11-KD, antiendocrine-resistant cells. In a breast cancer patient cohort coupled with in silico analysis of publicly available cohorts, high expression of USP11 was significantly associated with poor survival in ERα-positive (ERα+) patients. Overall, this study highlights a novel role for USP11 in the regulation of ERα activity, where USP11 may represent a prognostic marker in ERα+ breast cancer. SIGNIFICANCE: A newly identified role for USP11 in ERα transcriptional activity represents a novel mechanism of ERα regulation and a pathway to be exploited for the management of ER-positive breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Enzimas Desubiquitinantes/fisiologia , Receptor alfa de Estrogênio/metabolismo , Tioléster Hidrolases/fisiologia , Transativadores/fisiologia , Neoplasias da Mama/química , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/efeitos dos fármacos , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Inativação Gênica , Genes cdc , Humanos , Fenótipo , Prognóstico , Proteoma , Tamoxifeno/farmacologia , Tioléster Hidrolases/efeitos dos fármacosRESUMO
Triple-negative breast cancer (TNBC) patients commonly exhibit poor prognosis and high relapse after treatment, but there remains a lack of biomarkers and effective targeted therapies for this disease. Here, we report evidence highlighting the cell-cycle-related kinase CDK7 as a driver and candidate therapeutic target in TNBC. Using publicly available transcriptomic data from a collated set of TNBC patients (n = 383) and the METABRIC TNBC dataset (n = 217), we found CDK7 mRNA levels to be correlated with patient prognosis. High CDK7 protein expression was associated with poor prognosis within the RATHER TNBC cohort (n = 109) and the METABRIC TNBC cohort (n = 203). The highly specific CDK7 kinase inhibitors, BS-181 and THZ1, each downregulated CDK7-mediated phosphorylation of RNA polymerase II, indicative of transcriptional inhibition, with THZ1 exhibiting 500-fold greater potency than BS-181. Mechanistic investigations revealed that the survival of MDA-MB-231 TNBC cells relied heavily on the BCL-2/BCL-XL signaling axes in cells. Accordingly, we found that combining the BCL-2/BCL-XL inhibitors ABT-263/ABT199 with the CDK7 inhibitor THZ1 synergized in producing growth inhibition and apoptosis of human TNBC cells. Collectively, our results highlight elevated CDK7 expression as a candidate biomarker of poor prognosis in TNBC, and they offer a preclinical proof of concept for combining CDK7 and BCL-2/BCL-XL inhibitors as a mechanism-based therapeutic strategy to improve TNBC treatment. Cancer Res; 77(14); 3834-45. ©2017 AACR.
Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/biossíntese , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/genética , Feminino , Humanos , Pessoa de Meia-Idade , Fenilenodiaminas/farmacologia , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/metabolismo , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
Photodynamic therapy (PDT) is an established treatment modality for cancer. ADPM06 is an emerging non-porphyrin PDT agent which has been specifically designed for therapeutic application. Recently, we have demonstrated that ADPM06-PDT is well tolerated in vivo and elicits impressive complete response rates in various models of cancer when a short drug-light interval is applied. Herein, the mechanism of action of ADPM06-PDT in vitro and in vivo is outlined. Using a drug and light combination that reduces the clonogenicity of MDA-MB-231 cells by >90%, we detected a well-orchestrated apoptotic response accompanied by the activation of various caspases in vitro. The generation of reactive oxygen species (ROS) upon photosensitizer irradiation was found to be the key instigator in the observed apoptotic response, with the endoplasmic reticulum (ER) found to be the intracellular site of initial PDT damage, as determined by induction of a rapid ER stress response post-PDT. PDT-induced apoptosis was also found to be independent of p53 tumor suppressor status. A robust therapeutic response in vivo was demonstrated, with a substantial reduction in tumor proliferation observed, as well as a rapid induction of apoptosis and initiation of ER stress, mirroring numerous aspects of the mechanism of action of ADPM06 in vitro. Finally, using a combination of (18) F-labeled 3'-deoxy-3'-fluorothymidine ((18) F-FLT) nuclear and optical imaging, a considerable decrease in tumor proliferation over 24-hr in two models of human cancer was observed. Taken together, this data clearly establishes ADPM06 as an exciting novel PDT agent with significant potential for further translational development.
Assuntos
Apoptose , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Pirróis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Células HCT116 , Humanos , Medições Luminescentes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tomografia por Emissão de Pósitrons , Desdobramento de Proteína/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Overexpression of HER-2 in breast cancer is frequently associated with expression of EGFR, and EGFR expression influences response to HER-2 inhibition. The aim of this study was to examine the effects of combining dual inhibition of EGFR and HER-2, using trastuzumab, gefitinib and lapatinib, in HER-2 overexpressing breast cancer cells. Combination proliferation assays were performed in two HER-2 positive breast cancer cell lines, SKBR-3 and BT-474. Trastuzumab combined with lapatinib was also tested in BT-474 xenografts. In proliferation assays, dual targeting with trastuzumab and gefitinib or lapatinib showed synergy or additivity in both SKBR-3 and BT-474 cells. Trastuzumab (10 nM) or gefitinib (5 µM) alone did not induce significant apoptosis, whereas lapatinib (0.75 µM) induced significant apoptosis in SKBR-3 cells. Trastuzumab combined with lapatinib further enhanced apoptosis induction. Trastuzumab (10 nM) and gefitinib (5 µM) induced apoptosis comparable to lapatinib alone (0.75 µM), suggesting that inhibition of both EGFR and HER-2 may be required to induce apoptosis in these cells. Pre-treatment with trastuzumab and gefitinib or lapatinib enhanced response to chemotherapy in vitro. The combination of trastuzumab and lapatinib also effectively blocked tumour growth in vivo. Dual targeting of EGFR and HER-2, by combining trastuzumab with EGFR/HER-2 tyrosine kinase inhibitors, may improve response in HER-2 overexpressing breast cancer cells that also express EGFR.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Humanos , Immunoblotting , Concentração Inibidora 50 , Lapatinib , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Receptor ErbB-2/metabolismo , Trastuzumab , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Molecular imaging is the visualization, characterization and measurement of biological processes at the molecular and cellular level. In oncology, molecular imaging approaches can be directly applied as translational biomarkers of disease progression. In this article, selected imaging modalities are discussed with respect to this role. Recent studies focusing on emerging imaging biomarkers and new developments in the field are highlighted. Importantly, because ex vivo or tissue-based imaging now represents an important tool in the discovery and validation of oncology biomarkers, special attention is given to this resurgent field.
Assuntos
Imagem Molecular/métodos , Neoplasias/diagnóstico por imagem , Pesquisa Translacional Biomédica/métodos , Animais , Biomarcadores Tumorais , Progressão da Doença , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Cintilografia , Estudos de Validação como AssuntoRESUMO
Photodynamic therapy (PDT) is now a well-recognized modality for the treatment of cancer. While PDT has developed progressively over the last century, great advances have been observed in the field in recent years. The concept of dual selectivity of PDT agents is now widely accepted due to the relative specificity and selectivity of PDT along with the absence of harmful side effects often encountered with chemotherapy or radiotherapy. Traditionally, porphyrin-based photosensitizers have dominated the PDT field but these first generation photosensitizers have several disadvantages, with poor light absorption and cutaneous photosensitivity being the predominant side effects. As a result, the requirement for new photosensitizers, including second generation porphyrins and porphyrin derivatives as well as third generation photosensitizers has arisen, with the aim of alleviating the problems encountered with first generation porphyrins and improving the efficacy of PDT. The investigation of nonporphyrin photosensitizers for the development of novel PDT agents has been considerably less extensive than porphyrin-based compounds; however, structural modification of nonporphyrin photosensitizers has allowed for manipulation of the photochemotherapeutic properties. The aim of this review is to provide an insight into PDT photosensitizers clinically approved for application in oncology, as well as those which show significant potential in ongoing preclinical studies.