Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Sci (Lond) ; 136(11): 825-840, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35535709

RESUMO

Acute kidney injury (AKI) due to ischemia is a serious and frequent clinical complication with mortality rates as high as 80%. Vascular congestion in the renal outer medulla occurs early after ischemia reperfusion (IR) injury, and congestion has been linked to worsened outcomes following IR. There is evidence implicating both male sex and preexisting hypertension as risk factors for poor outcomes following IR. The present study tested the hypothesis that male spontaneously hypertensive rats (SHR) have greater vascular congestion and impaired renal recovery following renal IR vs. female SHR and normotensive male Sprague-Dawley rats (SD). Thirteen-week-old male and female SHR and SD were subjected to sham surgery or 30 min of warm bilateral ischemia followed by reperfusion. Rats were euthanized 24 h or 7 days post-IR. IR increased renal injury in all groups vs. sham controls at 24 h. At 7 days post-IR, injury remained elevated only in male SHR. Histological examination of SD and SHR kidneys 24 h post-IR showed vascular congestion in males and females. Vascular congestion was sustained only in male SHR 7 days post-IR. To assess the role of vascular congestion on impaired recovery following IR, additional male and female SHR were pretreated with heparin (200 U/kg) prior to IR. Heparin pretreatment reduced IR-induced vascular congestion and improved renal function in male SHR 7 days post-IR. Interestingly, preventing increases in blood pressure (BP) in male SHR did not alter sustained vascular congestion. Our data demonstrate that IR-induced vascular congestion is a major driving factor for impaired renal recovery in male SHR.


Assuntos
Injúria Renal Aguda , Hipertensão , Traumatismo por Reperfusão , Injúria Renal Aguda/patologia , Animais , Feminino , Heparina/uso terapêutico , Hipertensão/tratamento farmacológico , Isquemia/patologia , Rim/patologia , Masculino , Perfusão/efeitos adversos , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
2.
Sci Rep ; 12(1): 1646, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102218

RESUMO

While urine-based liquid biopsy has expanded to the analyses of extracellular nucleic acids, the potential of transfer RNA (tRNA) encapsulated within extracellular vesicles has not been explored as a new class of urine biomarkers for kidney injury. Using rat kidney and mouse tubular cell injury models, we tested if extracellular vesicle-loaded tRNA and their m1A (N1-methyladenosine) modification reflect oxidative stress of kidney injury and determined the mechanism of tRNA packaging into extracellular vesicles. We determined a set of extracellular vesicle-loaded, isoaccepting tRNAs differentially released after ischemia-reperfusion injury and oxidative stress. Next, we found that m1A modification of extracellular vesicle tRNAs, despite an increase of the methylated tRNAs in intracellular vesicles, showed little or no change under oxidative stress. Mechanistically, oxidative stress decreases tRNA loading into intracellular vesicles while the tRNA-loaded vesicles are accumulated due to decreased release of the vesicles from the cell surface. Furthermore, Maf1-mediated transcriptional repression of the tRNAs decreases the cargo availability for extracellular vesicle release in response to oxidative stress. Taken together, our data support that release of extracellular vesicle tRNAs reflects oxidative stress of kidney tubules which might be useful to detect ischemic kidney injury and could lead to rebalance protein translation under oxidative stress.


Assuntos
Injúria Renal Aguda/metabolismo , Vesículas Extracelulares/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Estresse Oxidativo , RNA de Transferência/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia , Isquemia/genética , Isquemia/patologia , Rim/patologia , Metilação , Camundongos , RNA de Transferência/genética , Ratos Sprague-Dawley , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica
3.
Hypertension ; 78(5): 1296-1309, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34488433

RESUMO

IL-18 (interleukin-18) is elevated in hypertensive patients, but its contribution to high blood pressure and end-organ damage is unknown. We examined the role of IL-18 in the development of renal inflammation and injury in a mouse model of low-renin hypertension. Hypertension was induced in male C57BL6/J (WT) and IL-18−/− mice by uninephrectomy, deoxycorticosterone acetate (2.4 mg/d, s.c.) and 0.9% drinking saline (1K/DOCA/salt). Normotensive controls received uninephrectomy and placebo (1K/placebo). Blood pressure was measured via tail cuff or radiotelemetry. After 21 days, kidneys were harvested for (immuno)histochemical, quantitative-PCR and flow cytometric analyses of fibrosis, inflammation, and immune cell infiltration. 1K/DOCA/salt-treated WT mice developed hypertension, renal fibrosis, upregulation of proinflammatory genes, and accumulation of CD3+ T cells in the kidneys. They also displayed increased expression of IL-18 on tubular epithelial cells. IL-18−/− mice were profoundly protected from hypertension, renal fibrosis, and inflammation. Bone marrow transplantation between WT and IL-18−/− mice revealed that IL-18-deficiency in non-bone marrow-derived cells alone afforded equivalent protection against hypertension and renal injury as global IL-18 deficiency. IL-18 receptor subunits­interleukin-18 receptor 1 and IL-18R accessory protein­were upregulated in kidneys of 1K/DOCA/salt-treated WT mice and localized to T cells and tubular epithelial cells. T cells from kidneys of 1K/DOCA/salt-treated mice produced interferon-γ upon ex vivo stimulation with IL-18, whereas those from 1K/placebo mice did not. In conclusion, IL-18 production by tubular epithelial cells contributes to elevated blood pressure, renal inflammation, and fibrosis in 1K/DOCA/salt-treated mice, highlighting it as a promising therapeutic target for hypertension and kidney disease.


Assuntos
Células Epiteliais/metabolismo , Hipertensão/fisiopatologia , Inflamação/metabolismo , Interleucina-18/metabolismo , Nefropatias/metabolismo , Albuminúria/induzido quimicamente , Albuminúria/genética , Albuminúria/metabolismo , Animais , Pressão Sanguínea/genética , Pressão Sanguínea/fisiologia , Acetato de Desoxicorticosterona , Hipertensão/induzido quimicamente , Hipertensão/genética , Inflamação/genética , Interleucina-18/genética , Rim/metabolismo , Rim/patologia , Nefropatias/genética , Túbulos Renais/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo
4.
Clin Sci (Lond) ; 134(13): 1751-1762, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32608481

RESUMO

Renal ischemia is the most common cause of acute kidney injury. Damage-associated molecular patterns (DAMPs) initiate an inflammatory response and contribute to ischemia-reperfusion (IR) injury in males, yet the contribution of DAMPs to IR injury in females is unknown. The goal of the current study was to test the hypothesis that males have greater increases in the DAMP high-mobility group box 1 (HMGB1), worsening injury compared with females. Thirteen-week-old male and female spontaneously hypertensive rats (SHR) were subjected to sham or 45-min warm bilateral ischemia followed by 24 h of reperfusion before measurement of HMGB1 and renal function. Additional SHR were pre-treated with control (IgG) or HMGB1 neutralizing antibody (300 µg/rat) 1 h prior to renal ischemia. Blood, urine and kidneys were harvested 24 h post-IR for histological and Western blot analyses. Initial studies confirmed that IR resulted in greater increases in renal HMGB1 in male SHR compared with females. Greater renal HMGB1 in male SHR post-IR resulted in greater increases in serum TNF-α and renal IL-1ß, neutrophil infiltration and tubular cell death. Neutralization of HMGB1 attenuated IR-induced increases in plasma creatinine, blood urea nitrogen (BUN), inflammation, tubular damage and tubular cell death only in male SHR. In conclusion, our data demonstrate that there is a sex difference in the contribution of HMGB1 to IR-induced injury, where males exhibit greater increases in HMGB1-mediated renal injury in response to IR compared with females.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína HMGB1/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/genética , Animais , Creatinina/sangue , Feminino , Proteína HMGB1/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Isquemia/genética , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Traumatismo por Reperfusão/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
Redox Biol ; 27: 101191, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31060879

RESUMO

Hv1 is a voltage-gated proton channel highly expressed in immune cells where, it acts to maintain NAD(P)H oxidase activity during the respiratory burst. We have recently reported that Hv1 is expressed in cells of the medullary thick ascending limb (mTAL) of the kidney and is critical to augment reactive oxygen species (ROS) production by this segment. While Hv1 is associated with NOX2 mediated ROS production in immune cells, the source of the Hv1 dependent ROS in mTAL remains unknown. In the current study, the rate of ROS formation was quantified in freshly isolated mTAL using dihydroethidium and ethidium fluorescence. Hv1 dependent ROS production was stimulated by increasing bath osmolality and ammonium chloride (NH4Cl) loading. Loss of either p67phox or NOX4 did not abolish the formation of ROS in mTAL. Hv1 was localized to mitochondria within mTAL, and the mitochondrial superoxide scavenger mitoTEMPOL reduced ROS formation. Rotenone significantly increased ROS formation and decreased mitochondrial membrane potential in mTAL from wild-type rats, while treatment with this inhibitor decreased ROS formation and increased mitochondrial membrane potential in mTAL from Hv1-/- mutant rats. These data indicate that NADPH oxidase is not the primary source of Hv1 dependent ROS production in mTAL. Rather Hv1 localizes to the mitochondria in mTAL and modulates the formation of ROS by complex I. These data provide a potential explanation for the effects of Hv1 on ROS production in cells independent of its contribution to maintenance of cell membrane potential and intracellular pH.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Canais Iônicos/metabolismo , Alça do Néfron/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Feminino , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , Oxirredução/efeitos dos fármacos , Prótons , Ratos , Explosão Respiratória/efeitos dos fármacos , Explosão Respiratória/fisiologia , Rotenona/farmacologia , Superóxidos/metabolismo
6.
Kidney Int ; 95(6): 1359-1372, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30905471

RESUMO

In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Glomerulonefrite/tratamento farmacológico , Glomérulos Renais/efeitos dos fármacos , Peptídeos Cíclicos/administração & dosagem , Proteinúria/tratamento farmacológico , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Dinoprostona/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Glomerulonefrite/sangue , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Injeções Intraperitoneais , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Camundongos , Óxido Nítrico/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteinúria/sangue , Proteinúria/imunologia , Proteinúria/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Pharmacol Res ; 141: 236-248, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616018

RESUMO

Much research now indicates that vagal nerve stimulation results in a systemic reduction in inflammatory cytokine production and an increase in anti-inflammatory cell populations that originates from the spleen. Termed the 'cholinergic anti-inflammatory pathway', therapeutic activation of this innate physiological response holds enormous promise for the treatment of inflammatory disease. Much controversy remains however, regarding the underlying physiological pathways mediating this response. This controversy is anchored in the fact that the vagal nerve itself does not innervate the spleen. Recent research from our own laboratory indicating that oral intake of sodium bicarbonate stimulates splenic anti-inflammatory pathways, and that this effect may require transmission of signals to the spleen through the mesothelium, provide new insight into the physiological pathways mediating the cholinergic anti-inflammatory pathway. In this review, we examine proposed models of the cholinergic anti-inflammatory pathway and attempt to frame our recent results in relation to these hypotheses. Following this discussion, we then provide an alternative model of the cholinergic anti-inflammatory pathway which is consistent both with our recent findings and the published literature. We then discuss experimental approaches that may be useful to delineate these hypotheses. We believe the outcome of these experiments will be critical in identifying the most appropriate methods to harness the therapeutic potential of the cholinergic anti-inflammatory pathway for the treatment of disease and may also shed light on the etiology of other pathologies, such as idiopathic fibrosis.


Assuntos
Epitélio/fisiologia , Inflamação/fisiopatologia , Neuroimunomodulação/fisiologia , Acetilcolina/fisiologia , Animais , Humanos , Rim/fisiologia , Baço/inervação , Linfócitos T/fisiologia , Nervo Vago/fisiologia
8.
Br J Pharmacol ; 175(18): 3640-3655, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953580

RESUMO

BACKGROUND AND PURPOSE: Macropinocytosis is involved in many pathologies, including cardiovascular disorders, cancer, allergic diseases, viral and bacterial infections. Unfortunately, the currently available pharmacological inhibitors of macropinocytosis interrupt other endocytic processes and have non-specific endocytosis-independent effects. Here we have sought to identify new, clinically relevant inhibitors of macropinocytosis, using an FDA-approved drug library. EXPERIMENTAL APPROACH: In the present study, 640 FDA-approved compounds were tested for their ability to inhibit macropinocytosis. A series of secondary assays were performed to confirm inhibitory activity, determine IC50 values and investigate cell toxicity. The ability of identified hits to inhibit phagocytosis and clathrin-mediated and caveolin-mediated endocytosis was also investigated. Scanning electron microscopy and molecular biology techniques were utilized to examine the mechanisms by which selected compounds inhibit macropinocytosis. KEY RESULTS: The primary screen identified 14 compounds that at ~10 µM concentration inhibit >95% of macropinocytotic solute internalization. Three compounds - imipramine, phenoxybenzamine and vinblastine - potently inhibited (IC50  ≤ 131 nM) macropinocytosis without exerting cytotoxic effects or inhibiting other endocytic pathways. Scanning electron microscopy imaging indicated that imipramine inhibits membrane ruffle formation, a critical early step leading to initiation of macropinocytosis. Finally, imipramine has been shown to inhibit macropinocytosis in several cell types, including cancer cells, dendritic cells and macrophages. CONCLUSIONS AND IMPLICATIONS: Our results identify imipramine as a new pharmacological tool to study macropinocytosis in cellular and biological systems. This study also suggests that imipramine could be a good candidate for repurposing as a therapeutic agent in pathological processes involving macropinocytosis.


Assuntos
Aprovação de Drogas/legislação & jurisprudência , Pinocitose/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Clatrina/metabolismo , Células Dendríticas/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Endocitose , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imipramina/farmacologia , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estados Unidos , United States Food and Drug Administration
9.
J Immunol ; 200(10): 3568-3586, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29661827

RESUMO

We tested the hypothesis that oral NaHCO3 intake stimulates splenic anti-inflammatory pathways. Following oral NaHCO3 loading, macrophage polarization was shifted from predominantly M1 (inflammatory) to M2 (regulatory) phenotypes, and FOXP3+CD4+ T-lymphocytes increased in the spleen, blood, and kidneys of rats. Similar anti-inflammatory changes in macrophage polarization were observed in the blood of human subjects following NaHCO3 ingestion. Surprisingly, we found that gentle manipulation to visualize the spleen at midline during surgical laparotomy (sham splenectomy) was sufficient to abolish the response in rats and resulted in hypertrophy/hyperplasia of the capsular mesothelial cells. Thin collagenous connections lined by mesothelial cells were found to connect to the capsular mesothelium. Mesothelial cells in these connections stained positive for the pan-neuronal marker PGP9.5 and acetylcholine esterase and contained many ultrastructural elements, which visually resembled neuronal structures. Both disruption of the fragile mesothelial connections or transection of the vagal nerves resulted in the loss of capsular mesothelial acetylcholine esterase staining and reduced splenic mass. Our data indicate that oral NaHCO3 activates a splenic anti-inflammatory pathway and provides evidence that the signals that mediate this response are transmitted to the spleen via a novel neuronal-like function of mesothelial cells.


Assuntos
Acetilcolina/metabolismo , Anti-Inflamatórios/farmacologia , Colinérgicos/farmacologia , Epitélio/efeitos dos fármacos , Bicarbonato de Sódio/farmacologia , Baço/efeitos dos fármacos , Adulto , Animais , Biomarcadores/metabolismo , Epitélio/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo
10.
Stem Cells ; 35(3): 666-678, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27739139

RESUMO

Despite the high prevalence and major negative impact of uterine fibroids (UFs) on women's health, their pathogenesis remains largely unknown. While tumor-initiating cells have been previously isolated from UFs, the cell of origin for these tumors in normal myometrium has not been identified. We isolated cells with Stro1/CD44 surface markers from normal myometrium expressing stem cell markers Oct-4/c-kit/nanog that exhibited the properties of myometrial stem/progenitor-like cells (MSCs). Using a murine model for UFs, we showed that the cervix was a hypoxic "niche" and primary site (96%) for fibroid development in these animals. The pool size of these MSCs also responded to environmental cues, contracting with age and expanding in response to developmental environmental exposures that promote fibroid development. Translating these findings to women, the number of MSCs in unaffected human myometrium correlated with risk for developing UFs. Caucasian (CC) women with fibroids had increased numbers of MSCs relative to CC women without fibroids, and African-American (AA) women at highest risk for these tumors had the highest number of MSCs: AA-with fibroids > CC-with fibroids > AA-without fibroids > CC-without fibroids. These data identify Stro1+ /CD44+ MSCs as MSC/progenitor cell for UFs, and a target for ethnic and environmental factors that increase UF risk. Stem Cells 2017;35:666-678.


Assuntos
Carcinogênese/patologia , Compartimento Celular , Disruptores Endócrinos/toxicidade , Leiomioma/patologia , Miométrio/patologia , Envelhecimento , Animais , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Contagem de Células , Exposição Ambiental , Feminino , Hormônios/farmacologia , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Oxigênio/farmacologia , Ratos , Fatores de Risco , Esteroides/farmacologia , Neoplasias Uterinas/patologia
11.
J Clin Invest ; 126(4): 1425-37, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927670

RESUMO

The adult kidney plays a central role in erythropoiesis and is the main source of erythropoietin (EPO), an oxygen-sensitive glycoprotein that is essential for red blood cell production. Decreases of renal pO2 promote hypoxia-inducible factor 2-mediated (HIF-2-mediated) induction of EPO in peritubular interstitial fibroblast-like cells, which serve as the cellular site of EPO synthesis in the kidney. It is not clear whether HIF signaling in other renal cell types also contributes to the regulation of EPO production. Here, we used a genetic approach in mice to investigate the role of renal epithelial HIF in erythropoiesis. Specifically, we found that HIF activation in the proximal nephron via induced inactivation of the von Hippel-Lindau tumor suppressor, which targets the HIF-α subunit for proteasomal degradation, led to rapid development of hypoproliferative anemia that was associated with a reduction in the number of EPO-producing renal interstitial cells. Moreover, suppression of renal EPO production was associated with increased glucose uptake, enhanced glycolysis, reduced mitochondrial mass, diminished O2 consumption, and elevated renal tissue pO2. Our genetic analysis suggests that tubulointerstitial cellular crosstalk modulates renal EPO production under conditions of epithelial HIF activation in the kidney.


Assuntos
Eritropoese , Eritropoetina/biossíntese , Túbulos Renais Proximais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Epitélio/metabolismo , Eritropoetina/genética , Glucose/genética , Glucose/metabolismo , Camundongos , Camundongos Transgênicos , Consumo de Oxigênio , Fatores de Transcrição/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
12.
Clin Exp Pharmacol Physiol ; 40(2): 106-22, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23167537

RESUMO

Renal blood flow, local tissue perfusion and blood oxygen content are the major determinants of oxygen delivery to kidney tissue. Arterial pressure and segmental vascular resistance influence kidney oxygen consumption through effects on glomerular filtration rate and sodium reabsorption. Diffusive shunting of oxygen from arteries to veins in the cortex and from descending to ascending vasa recta in the medulla limits oxygen delivery to renal tissue. Oxygen shunting depends on the vascular network, renal haemodynamics and kidney oxygen consumption. Consequently, the impact of changes in renal haemodynamics on tissue oxygenation cannot necessarily be predicted intuitively and, instead, requires the integrative approach offered by computational modelling and multiple measuring modalities. Tissue hypoxia is a hallmark of acute kidney injury (AKI) arising from multiple initiating insults, including ischaemia-reperfusion injury, radiocontrast administration, cardiopulmonary bypass surgery, shock and sepsis. Its pathophysiology is defined by inflammation and/or ischaemia resulting in alterations in renal tissue oxygenation, nitric oxide bioavailability and oxygen radical homeostasis. This sequence of events appears to cause renal microcirculatory dysfunction, which may then be exacerbated by the inappropriate use of therapies common in peri-operative medicine, such as fluid resuscitation. The development of new ways to prevent and treat AKI requires an integrative approach that considers not just the molecular mechanisms underlying failure of filtration and tissue damage, but also the contribution of haemodynamic factors that determine kidney oxygenation. The development of bedside monitors allowing continuous surveillance of renal haemodynamics, oxygenation and function should facilitate better prevention, detection and treatment of AKI.


Assuntos
Injúria Renal Aguda/metabolismo , Hemodinâmica/fisiologia , Rim/metabolismo , Consumo de Oxigênio/fisiologia , Injúria Renal Aguda/patologia , Animais , Humanos , Rim/irrigação sanguínea , Rim/patologia , Circulação Renal/fisiologia
13.
Am J Physiol Regul Integr Comp Physiol ; 300(5): R1023-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21270341

RESUMO

A fundamental requirement for cellular vitality is the maintenance of plasma ion concentration within strict ranges. It is the function of the kidney to match urinary excretion of ions with daily ion intake and nonrenal losses to maintain a stable ionic milieu. NADPH oxidase is a source of reactive oxygen species (ROS) within many cell types, including the transporting renal epithelia. The focus of this review is to describe the role of NADPH oxidase-derived ROS toward local renal tubular ion transport in each nephron segment and to discuss how NADPH oxidase-derived ROS signaling within the nephron may mediate ion homeostasis. In each case, we will attempt to identify the various subunits of NADPH oxidase and reactive oxygen species involved and the ion transporters, which these affect. We will first review the role of NADPH oxidase on renal Na(+) and K(+) transport. Finally, we will review the relationship between tubular H(+) efflux and NADPH oxidase activity.


Assuntos
Células Epiteliais/enzimologia , Túbulos Renais/enzimologia , NADPH Oxidases/metabolismo , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sódio/metabolismo , Equilíbrio Hidroeletrolítico , Absorção , Animais , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons
14.
Am J Physiol Renal Physiol ; 295(3): F726-33, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18579705

RESUMO

The aims of the present study were to determine whether superoxide (O(2)(-)) production is enhanced in medullary thick ascending limb (mTAL) of Dahl salt-sensitive (SS) rats compared with a salt-resistant consomic control strain (SS.13(BN)) and to elucidate the cellular pathways responsible for augmented O(2)(-) production. Studies were carried out in 7- to 10-wk-old male SS and SS.13(BN) rats fed either a 0.4% NaCl diet or a 4.0% NaCl diet for 3 days before tissue harvest. Tissue strips containing mTAL were isolated from the left kidney, loaded with the O(2)(-)-sensitive fluorescent dye dihydroethidium, superfused with modified Hanks' solution, and imaged at x60 magnification on a heated microscope stage. O(2)(-) production was stimulated in mTAL by incrementing superfusate NaCl concentration from 154 to 254 to 500 mM. O(2)(-) production was enhanced in mTAL of SS rats compared with SS.13(BN) rats in response to incrementing bath NaCl. Addition of N-methyl-amiloride (100 muM) or inhibition of NAD(P)H oxidase reduced O(2)(-) production in SS mTAL to levels observed in SS.13(BN) rats. Both amiloride- and ouabain-sensitive pathways of O(2)(-) production were elevated following 3 days of high (4.0%) NaCl feeding in mTAL of SS and SS.13(BN) rats. We conclude that mTAL from SS rats exhibit enhanced amiloride-sensitive O(2)(-) production. The amiloride-sensitive O(2)(-) response in mTAL is independent of active Na(+) transport and appears to be mediated by NAD(P)H oxidase. Amiloride-sensitive O(2)(-) production is likely to contribute to augmented outer medullary O(2)(-) production observed in SS rats during both normal and high NaCl diets.


Assuntos
Amilorida/farmacologia , Medula Renal/metabolismo , Estresse Oxidativo , Bloqueadores dos Canais de Sódio/farmacologia , Superóxidos/metabolismo , Animais , Tamanho Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Líquido Extracelular/metabolismo , Hipertensão/induzido quimicamente , Técnicas In Vitro , Medula Renal/efeitos dos fármacos , Masculino , NADPH Oxidases/antagonistas & inibidores , Concentração Osmolar , Ratos , Ratos Endogâmicos Dahl , Sódio/metabolismo , Cloreto de Sódio/farmacologia , Sódio na Dieta/efeitos adversos , Urotélio/efeitos dos fármacos , Urotélio/metabolismo
15.
Am J Physiol Renal Physiol ; 293(2): F526-32, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17507604

RESUMO

We previously reported that arginine vasopressin (AVP) stimulates the production of nitric oxide (NO) in inner medullary collecting duct (IMCD) via activation of V2 receptors (V2R) and the mobilization of intracellular Ca(2+). The aim of this study was to determine the pathway(s) through which this response is mediated. IMCDs were dissected from male Sprague-Dawley rats and intracellular Ca(2+) concentration ([Ca(2+)](i)) and NO production were measured using a fluorescence imaging system. AVP (100 nmol/l) produced a rapid increase [Ca(2+)](i) of 381 +/- 78 nmol/l that was followed by a significant increase of NO production (166 +/- 61%). The specific nonpeptide V2R antagonist OPC31260 (1 microM), but not the V1R antagonist OPC21268 (1 microM), inhibited the increase in [Ca(2+)](i) (up to 91 +/- 5%) and abolished the NO response to AVP. Both the phospholipase C inhibitor U73112 (3 microM) and the inositol (1,4,5) tri-phosphate 3 receptor blocker 2-APB (75 microM) reduced the peak [Ca(2+)](i) response to AVP (by 65 +/- 9 and 59 +/- 15%, respectively) and abolished the NO response. Although forskolin (100 microM; an activator of adenylyl cyclase) elicited a moderate increase in [Ca(2+)](i), neither preincubation with the adenylyl cyclase inhibitor 2'-5'-dideoxyadenosine (50 microM) nor the protein kinase A (PKA) inhibitor PKA(14-22) (100 microM) significantly inhibited peak [Ca(2+)](i) in response to AVP. IMCD [Ca(2+)](i) responses to AVP were reduced by 72 +/- 8% when incubated in Ca(2+)-free media and could be completely abolished by preincubation with the Ca(2+)-ATPase inhibitor thapsigargin. We conclude that AVP-induced NO production in IMCD is dependent on V2R activation of the phosphoinositide pathway and the mobilization of Ca(2+) from both intracellular and extracellular pools.


Assuntos
Medula Renal/metabolismo , Túbulos Renais Coletores/metabolismo , Óxido Nítrico/biossíntese , Fosfatidilinositóis/metabolismo , Receptores de Vasopressinas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Vasopressinas/farmacologia , Animais , Antagonistas dos Receptores de Hormônios Antidiuréticos , Arginina Vasopressina/farmacologia , Benzazepinas/farmacologia , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Medula Renal/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Masculino , Piperidinas/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência , Fosfolipases Tipo C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA