Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(2): e1011996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386622

RESUMO

Vacuolar pathogens reside in membrane-bound compartments within host cells. Maintaining the integrity of this compartment is paramount to bacterial survival and replication as it protects against certain host surveillance mechanisms that function to eradicate invading pathogens. Preserving this compartment during bacterial replication requires expansion of the vacuole membrane to accommodate the increasing number of bacteria, and yet, how this is accomplished remains largely unknown. Here, we show that the vacuolar pathogen Legionella pneumophila exploits multiple sources of host cell fatty acids, including inducing host cell fatty acid scavenging pathways, in order to promote expansion of the replication vacuole and bacteria growth. Conversely, when exogenous lipids are limited, the decrease in host lipid availability restricts expansion of the replication vacuole membrane, resulting in a higher density of bacteria within the vacuole. Modifying the architecture of the vacuole prioritizes bacterial growth by allowing the greatest number of bacteria to remain protected by the vacuole membrane despite limited resources for its expansion. However, this trade-off is not without risk, as it can lead to vacuole destabilization, which is detrimental to the pathogen. However, when host lipid resources become extremely scarce, for example by inhibiting host lipid scavenging, de novo biosynthetic pathways, and/or diverting host fatty acids to storage compartments, bacterial replication becomes severely impaired, indicating that host cell fatty acid availability also directly regulates L. pneumophila growth. Collectively, these data demonstrate dual roles for host cell fatty acids in replication vacuole expansion and bacterial proliferation, revealing the central functions for these molecules and their metabolic pathways in L. pneumophila pathogenesis.


Assuntos
Legionella pneumophila , Legionella pneumophila/metabolismo , Vacúolos/metabolismo , Macrófagos/microbiologia , Ácidos Graxos/metabolismo , Lipídeos
2.
Nat Microbiol ; 5(4): 599-609, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988381

RESUMO

Virulence mechanisms typically evolve through the continual interaction of a pathogen with its host. In contrast, it is poorly understood how environmentally acquired pathogens are able to cause disease without prior interaction with humans. Here, we provide experimental evidence for the model that Legionella pathogenesis in humans results from the cumulative selective pressures of multiple amoebal hosts in the environment. Using transposon sequencing, we identify Legionella pneumophila genes required for growth in four diverse amoebae, defining universal virulence factors commonly required in all host cell types and amoeba-specific auxiliary genes that determine host range. By comparing genes that promote growth in amoebae and macrophages, we show that adaptation of L. pneumophila to each amoeba causes the accumulation of distinct virulence genes that collectively allow replication in macrophages and, in some cases, leads to redundancy in this host cell type. In contrast, some bacterial proteins that promote replication in amoebae restrict growth in macrophages. Thus, amoebae-imposed selection is a double-edged sword, having both positive and negative impacts on disease. Comparing the genome composition and host range of multiple Legionella species, we demonstrate that their distinct evolutionary trajectories in the environment have led to the convergent evolution of compensatory virulence mechanisms.


Assuntos
Amoeba/microbiologia , Coevolução Biológica , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Fatores de Virulência/genética , Adaptação Fisiológica , Amoeba/classificação , Animais , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Feminino , Especificidade de Hospedeiro , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/crescimento & desenvolvimento , Camundongos , Filogenia , Cultura Primária de Células , Seleção Genética , Virulência , Fatores de Virulência/classificação , Fatores de Virulência/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-29250488

RESUMO

The 1976 outbreak of Legionnaires' disease led to the discovery of the intracellular bacterial pathogen Legionella pneumophila. Given their impact on human health, Legionella species and the mechanisms responsible for their replication within host cells are often studied in alveolar macrophages, the primary human cell type associated with disease. Despite the potential severity of individual cases of disease, Legionella are not spread from person-to-person. Thus, from the pathogen's perspective, interactions with human cells are accidents of time and space-evolutionary dead ends with no impact on Legionella's long-term survival or pathogenic trajectory. To understand Legionella as a pathogen is to understand its interaction with its natural hosts: the polyphyletic protozoa, a group of unicellular eukaryotes with a staggering amount of evolutionary diversity. While much remains to be understood about these enigmatic hosts, we summarize the current state of knowledge concerning Legionella's natural host range, the diversity of Legionella-protozoa interactions, the factors influencing these interactions, the importance of avoiding the generalization of protozoan-bacterial interactions based on a limited number of model hosts and the central role of protozoa to the biology, evolution, and persistence of Legionella in the environment.


Assuntos
Amébidos/microbiologia , Interações Hospedeiro-Patógeno , Legionella/patogenicidade , Doença dos Legionários/microbiologia , Doença dos Legionários/parasitologia , Acanthamoeba/microbiologia , Amoeba/microbiologia , Biodiversidade , Evolução Biológica , Meio Ambiente , Hartmannella/microbiologia , Legionella/fisiologia , Legionella pneumophila/patogenicidade , Legionella pneumophila/fisiologia , Doença dos Legionários/transmissão , Macrófagos Alveolares/microbiologia , Naegleria/microbiologia
4.
Infect Immun ; 84(8): 2185-2197, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185787

RESUMO

Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted.


Assuntos
Ferro/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/genética , Ordem dos Genes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação
5.
Science ; 338(6113): 1440-4, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239729

RESUMO

Interactions between hosts and pathogens are complex, so understanding the events that govern these interactions requires the analysis of molecular mechanisms operating in both organisms. Many pathogens use multiple strategies to target a single event in the disease process, confounding the identification of the important determinants of virulence. We developed a genetic screening strategy called insertional mutagenesis and depletion (iMAD) that combines bacterial mutagenesis and RNA interference, to systematically dissect the interplay between a pathogen and its host. We used this technique to resolve the network of proteins secreted by the bacterium Legionella pneumophila to promote intracellular growth, a critical determinant of pathogenicity of this organism. This strategy is broadly applicable, allowing the dissection of any interface between two organisms involving numerous interactions.


Assuntos
Sistemas de Secreção Bacterianos/genética , Testes Genéticos/métodos , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/genética , Mutagênese Insercional/métodos , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Drosophila melanogaster/citologia , Flavoproteínas/genética , Humanos , Macrófagos/microbiologia , Interferência de RNA , Deleção de Sequência , Vacúolos/fisiologia
6.
Science ; 338(6110): 1072-6, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23112293

RESUMO

Eukaryotic cells can use the autophagy pathway to defend against microbes that gain access to the cytosol or reside in pathogen-modified vacuoles. It remains unclear if pathogens have evolved specific mechanisms to manipulate autophagy. Here, we found that the intracellular pathogen Legionella pneumophila could interfere with autophagy by using the bacterial effector protein RavZ to directly uncouple Atg8 proteins attached to phosphatidylethanolamine on autophagosome membranes. RavZ hydrolyzed the amide bond between the carboxyl-terminal glycine residue and an adjacent aromatic residue in Atg8 proteins, producing an Atg8 protein that could not be reconjugated by Atg7 and Atg3. Thus, intracellular pathogens can inhibit autophagy by irreversibly inactivating Atg8 proteins during infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Autofagia , Proteínas de Bactérias/metabolismo , Cisteína Proteases/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Doença dos Legionários/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 7 Relacionada à Autofagia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Técnicas de Cultura de Células , Cisteína Proteases/genética , Deleção de Genes , Glicina/metabolismo , Células HEK293 , Humanos , Hidrólise , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , Proteínas dos Microfilamentos/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
7.
Proc Natl Acad Sci U S A ; 108(36): 14733-40, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873199

RESUMO

Legionella pneumophila is a bacterial pathogen of amoebae and humans. Intracellular growth requires a type IVB secretion system that translocates at least 200 different proteins into host cells. To distinguish between proteins necessary for growth in culture and those specifically required for intracellular replication, a screen was performed to identify genes necessary for optimal growth in nutrient-rich medium. Mapping of these genes revealed that the L. pneumophila chromosome has a modular architecture consisting of several large genomic islands that are dispensable for growth in bacteriological culture. Strains lacking six of these regions, and thus 18.5% of the genome, were viable but required secondary point mutations for optimal growth. The simultaneous deletion of five of these genomic loci had no adverse effect on growth of the bacterium in nutrient-rich media. Remarkably, this minimal genome strain, which lacked 31% of the known substrates of the type IVB system, caused only marginal defects in intracellular growth within mouse macrophages. In contrast, deletion of single regions reduced growth within amoebae. The importance of individual islands, however, differed among amoebal species. The host-specific requirements of these genomic islands support a model in which the acquisition of foreign DNA has broadened the L. pneumophila host range.


Assuntos
Cromossomos Bacterianos/metabolismo , Genoma Bacteriano/fisiologia , Ilhas Genômicas/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Legionella pneumophila/fisiologia , Modelos Biológicos , Amoeba/metabolismo , Amoeba/microbiologia , Animais , Células Cultivadas , Mapeamento Cromossômico , Cromossomos Bacterianos/genética , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos
8.
Nat Rev Microbiol ; 7(1): 13-24, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19011659

RESUMO

The pathogenesis of Legionella pneumophila is derived from its growth within lung macrophages after aerosols are inhaled from contaminated water sources. Interest in this bacterium stems from its ability to manipulate host cell vesicular-trafficking pathways and establish a membrane-bound replication vacuole, making it a model for intravacuolar pathogens. Establishment of the replication compartment requires a specialized translocation system that transports a large cadre of protein substrates across the vacuolar membrane. These substrates regulate vesicle traffic and survival pathways in the host cell. This Review focuses on the strategies that L. pneumophila uses to establish intracellular growth and evaluates why this microorganism has accumulated an unprecedented number of translocated substrates that are targeted at host cells.


Assuntos
Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Vacúolos/microbiologia , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA