Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801719

RESUMO

Transfer ribonucleic acid (tRNA) therapeutics will provide personalized and mutation specific medicines to treat human genetic diseases for which no cures currently exist. The tRNAs are a family of adaptor molecules that interpret the nucleic acid sequences in our genes into the amino acid sequences of proteins that dictate cell function. Humans encode more than 600 tRNA genes. Interestingly, even healthy individuals contain some mutant tRNAs that make mistakes. Missense suppressor tRNAs insert the wrong amino acid in proteins, and nonsense suppressor tRNAs read through premature stop signals to generate full length proteins. Mutations that underlie many human diseases, including neurodegenerative diseases, cancers, and diverse rare genetic disorders, result from missense or nonsense mutations. Thus, specific tRNA variants can be strategically deployed as therapeutic agents to correct genetic defects. We review the mechanisms of tRNA therapeutic activity, the nature of the therapeutic window for nonsense and missense suppression as well as wild-type tRNA supplementation. We discuss the challenges and promises of delivering tRNAs as synthetic RNAs or as gene therapies. Together, tRNA medicines will provide novel treatments for common and rare genetic diseases in humans.

2.
IUBMB Life ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738523

RESUMO

Protein kinase B (AKT1) is a serine/threonine kinase that regulates fundamental cellular processes, including cell survival, proliferation, and metabolism. AKT1 activity is controlled by two regulatory phosphorylation sites (Thr308, Ser473) that stimulate a downstream signaling cascade through phosphorylation of many target proteins. At either or both regulatory sites, hyperphosphorylation is associated with poor survival outcomes in many human cancers. Our previous biochemical and chemoproteomic studies showed that the phosphorylated forms of AKT1 have differential selectivity toward peptide substrates. Here, we investigated AKT1-dependent activity in human cells, using a cell-penetrating peptide (transactivator of transcription, TAT) to deliver inactive AKT1 or active phospho-variants to cells. We used enzyme engineering and genetic code expansion relying on a phosphoseryl-transfer RNA (tRNA) synthetase (SepRS) and tRNASep pair to produce TAT-tagged AKT1 with programmed phosphorylation at one or both key regulatory sites. We found that all TAT-tagged AKT1 variants were efficiently delivered into human embryonic kidney (HEK 293T) cells and that only the phosphorylated AKT1 (pAKT1) variants stimulated downstream signaling. All TAT-pAKT1 variants induced glycogen synthase kinase (GSK)-3α phosphorylation, as well as phosphorylation of ribosomal protein S6 at Ser240/244, demonstrating stimulation of downstream AKT1 signaling. Fascinatingly, only the AKT1 variants phosphorylated at S473 (TAT-pAKT1S473 or TAT-pAKT1T308,S473) were able to increase phospho-GSK-3ß levels. Although each TAT-pAKT1 variant significantly stimulated cell proliferation, cells transduced with TAT-pAKT1T308 grew significantly faster than with the other pAKT1 variants. The data demonstrate differential activity of the AKT1 phospho-forms in modulating downstream signaling and proliferation in human cells.

3.
RNA Biol ; 21(1): 1-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38629491

RESUMO

Translation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation. Human genomes include both rare and more common mistranslating tRNA variants. We investigated three rare human tRNALeu variants that mis-incorporate Leu at phenylalanine or tryptophan codons. Expression of each tRNALeu anticodon variant in neuroblastoma cells caused defects in fluorescent protein production without significantly increased cytotoxicity under normal conditions or in the context of proteasome inhibition. Using tRNA sequencing and mass spectrometry we confirmed that each tRNALeu variant was expressed and generated mistranslation with Leu. To probe the flexibility of the entire genetic code towards Leu mis-incorporation, we created 64 yeast strains to express all possible tRNALeu anticodon variants in a doxycycline-inducible system. While some variants showed mild or no growth defects, many anticodon variants, enriched with G/C at positions 35 and 36, including those replacing Leu for proline, arginine, alanine, or glycine, caused dramatic reductions in growth. Differential phenotypic defects were observed for tRNALeu mutants with synonymous anticodons and for different tRNALeu isoacceptors with the same anticodon. A comparison to tRNAAla anticodon variants demonstrates that Ala mis-incorporation is more tolerable than Leu at nearly every codon. The data show that the nature of the amino acid substitution, the tRNA gene, and the anticodon are each important factors that influence the ability of cells to tolerate mistranslating tRNAs.


Assuntos
Aminoacil-tRNA Sintetases , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/genética , Anticódon/genética , Leucina/genética , RNA de Transferência de Leucina/genética , Código Genético , Códon , RNA de Transferência/genética , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Alanina/genética , Mamíferos/genética
4.
RNA ; 29(9): 1400-1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279998

RESUMO

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Assuntos
Saccharomyces cerevisiae , Códon de Terminação/genética , Códon de Terminação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aeromonas salmonicida/genética , Engenharia de Proteínas , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Humanos , Conformação de Ácido Nucleico
5.
Genes (Basel) ; 14(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833445

RESUMO

High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Sarcoma , Humanos , Agregados Proteicos , Esclerose Lateral Amiotrófica/genética , RNA de Transferência de Serina , RNA de Transferência
6.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497091

RESUMO

Protein kinase B (AKT1) is a serine/threonine kinase and central transducer of cell survival pathways. Typical approaches to study AKT1 biology in cells rely on growth factor or insulin stimulation that activates AKT1 via phosphorylation at two key regulatory sites (Thr308, Ser473), yet cell stimulation also activates many other kinases. To produce cells with specific AKT1 activity, we developed a novel system to deliver active AKT1 to human cells. We recently established a method to produce AKT1 phospho-variants from Escherichia coli with programmed phosphorylation. Here, we fused AKT1 with an N-terminal cell penetrating peptide tag derived from the human immunodeficiency virus trans-activator of transcription (TAT) protein. The TAT-tag did not alter AKT1 kinase activity and was necessary and sufficient to rapidly deliver AKT1 protein variants that persisted in human cells for 24 h without the need to use transfection reagents. TAT-pAKT1T308 induced selective phosphorylation of the known AKT1 substrate GSK-3α, but not GSK-3ß, and downstream stimulation of the AKT1 pathway as evidenced by phosphorylation of ribosomal protein S6 at Ser240/244. The data demonstrate efficient delivery of AKT1 with programmed phosphorylation to human cells, thus establishing a cell-based model system to investigate signaling that is dependent on AKT1 activity.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fosforilação , Transdução de Sinais , Insulina/metabolismo
7.
Sci Rep ; 12(1): 7010, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487958

RESUMO

The worldwide COVID-19 pandemic caused by the SARS-CoV-2 betacoronavirus has highlighted the need for a synthetic biology approach to create reliable and scalable sources of viral antigen for uses in diagnostics, therapeutics and basic biomedical research. Here, we adapt plasmid-based systems in the eukaryotic microalgae Phaeodactylum tricornutum to develop an inducible overexpression system for SARS-CoV-2 proteins. Limiting phosphate and iron in growth media induced expression of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein from the P. tricornutum HASP1 promoter in the wild-type strain and in a histidine auxotrophic strain that alleviates the requirement for antibiotic selection of expression plasmids. The RBD was purified from whole cell extracts (algae-RBD) with yield compromised by the finding that 90-95% of expressed RBD lacked the genetically encoded C-terminal 6X-histidine tag. Constructs that lacked the TEV protease site between the RBD and C-terminal 6X-histidine tag retained the tag, increasing yield. Purified algae-RBD was found to be N-linked glycosylated by treatment with endoglycosidases, was cross-reactive with anti-RBD polyclonal antibodies, and inhibited binding of recombinant RBD purified from mammalian cell lines to the human ACE2 receptor. We also show that the algae-RBD can be used in a lateral flow assay device to detect SARS-CoV-2 specific IgG antibodies from donor serum at sensitivity equivalent to assays performed with RBD made in mammalian cell lines. Our study shows that P. tricornutum is a scalable system with minimal biocontainment requirements for the inducible production of SARS-CoV-2 or other coronavirus antigens for pandemic diagnostics.


Assuntos
COVID-19 , Diatomáceas , Animais , COVID-19/diagnóstico , Diatomáceas/genética , Diatomáceas/metabolismo , Histidina , Humanos , Mamíferos/metabolismo , Glicoproteínas de Membrana/metabolismo , Pandemias , Fosfatos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral/metabolismo
8.
Cells ; 11(5)2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-35269443

RESUMO

The phosphoinositide-3-kinase (PI3K)/AKT pathway regulates cell survival and is over-activated in most human cancers, including ovarian cancer. Following growth factor stimulation, AKT1 is activated by phosphorylation at T308 and S473. Disruption of the AKT1 signaling pathway is sufficient to inhibit the epithelial-mesenchymal transition in epithelial ovarian cancer (EOC) cells. In metastatic disease, adherent EOC cells transition to a dormant spheroid state, characterized previously by low S473 phosphorylation in AKT1. We confirmed this finding and observed that T308 phosphorylation was yet further reduced in EOC spheroids and that the transition from adherent to spheroid growth is accompanied by significantly increased levels of let-7 miRNAs. We then used mechanistic studies to investigate the impact of let-7 miRNAs on AKT1 phosphorylation status and activity in cells. In growth factor-stimulated HEK 293T cells supplemented with let-7a, we found increased phosphorylation of AKT1 at T308, decreased phosphorylation at S473, and enhanced downstream AKT1 substrate GSK-3ß phosphorylation. Let-7b and let-7g also deregulated AKT signaling by rendering AKT1 insensitive to growth factor simulation. We uncovered let-7a-dependent deregulation of PI3K pathway components, including PI3KC2A, PDK1, and RICTOR, that govern AKT1 phosphorylation and activity. Together, our data show a new role for miRNAs in regulating AKT signaling.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo
9.
Nucleic Acids Res ; 49(20): 11883-11899, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34718744

RESUMO

In neurodegenerative diseases, including pathologies with well-known causative alleles, genetic factors that modify severity or age of onset are not entirely understood. We recently documented the unexpected prevalence of transfer RNA (tRNA) mutants in the human population, including variants that cause amino acid mis-incorporation. We hypothesized that a mistranslating tRNA will exacerbate toxicity and modify the molecular pathology of Huntington's disease-causing alleles. We characterized a tRNAPro mutant that mistranslates proline codons with alanine, and tRNASer mutants, including a tRNASerAGA G35A variant with a phenylalanine anticodon (tRNASerAAA) found in ∼2% of the population. The tRNAPro mutant caused synthetic toxicity with a deleterious huntingtin poly-glutamine (polyQ) allele in neuronal cells. The tRNASerAAA variant showed synthetic toxicity with proteasome inhibition but did not enhance toxicity of the huntingtin allele. Cells mistranslating phenylalanine or proline codons with serine had significantly reduced rates of protein synthesis. Mistranslating cells were slow but effective in forming insoluble polyQ aggregates, defective in protein and aggregate degradation, and resistant to the neuroprotective integrated stress response inhibitor (ISRIB). Our findings identify mistranslating tRNA variants as genetic factors that slow protein aggregation kinetics, inhibit aggregate clearance, and increase drug resistance in cellular models of neurodegenerative disease.


Assuntos
Proteína Huntingtina/biossíntese , Doença de Huntington/genética , RNA de Transferência de Prolina/genética , Acetamidas/farmacologia , Animais , Linhagem Celular Tumoral , Códon/genética , Cicloexilaminas/farmacologia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Células PC12 , Peptídeos/toxicidade , Proteólise , RNA de Transferência de Prolina/metabolismo , Ratos
10.
Eur Geriatr Med ; 12(5): 1101-1105, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33991324

RESUMO

PURPOSE: Identifying physical frailty is useful in the context of falls and syncope assessment. The phenotype-based SHARE Frailty Instrument for Primary Care (SHARE-FI) does not measure gait speed. We evaluated the association between SHARE-FI and gait speed in a Falls' and Syncope Unit (FASU). METHODS: We recruited a pilot sample of patients aged 50 and over attending FASU between November 2019 and March 2020. The association between gait speed and SHARE-FI was assessed with the Spearman's co-efficient (rs). Logistic regression was conducted to investigate the association controlling for age, sex, body mass index, comorbidities and polypharmacy. RESULTS: 104 participants were included (34 frail) median (IQR) age 74 (68-79) years. 68 were female. There was a significant negative correlation between frailty and gait speed (rs - 0.54, P < 0.001). In the multivariable model, gait speed remained independently associated with frailty (OR 0.09, 95% CI 0.02-0.52, P = 0.007). CONCLUSIONS: SHARE-FI significantly captured gait speed in this clinical sample, adding to its validity.


Assuntos
Fragilidade , Acidentes por Quedas , Idoso , Estudos Transversais , Feminino , Idoso Fragilizado , Fragilidade/diagnóstico , Avaliação Geriátrica , Humanos , Pessoa de Meia-Idade , Síncope/diagnóstico , Velocidade de Caminhada
11.
J Biol Chem ; 295(24): 8120-8134, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350110

RESUMO

Protein kinase B (AKT1) is a central node in a signaling pathway that regulates cell survival. The diverse pathways regulated by AKT1 are communicated in the cell via the phosphorylation of perhaps more than 100 cellular substrates. AKT1 is itself activated by phosphorylation at Thr-308 and Ser-473. Despite the fact that these phosphorylation sites are biomarkers for cancers and tumor biology, their individual roles in shaping AKT1 substrate selectivity are unknown. We recently developed a method to produce AKT1 with programmed phosphorylation at either or both of its key regulatory sites. Here, we used both defined and randomized peptide libraries to map the substrate selectivity of site-specific, singly and doubly phosphorylated AKT1 variants. To globally quantitate AKT1 substrate preferences, we synthesized three AKT1 substrate peptide libraries: one based on 84 "known" substrates and two independent and larger oriented peptide array libraries (OPALs) of ∼1011 peptides each. We found that each phospho-form of AKT1 has common and distinct substrate requirements. Compared with pAKT1T308, the addition of Ser-473 phosphorylation increased AKT1 activities on some, but not all of its substrates. This is the first report that Ser-473 phosphorylation can positively or negatively regulate kinase activity in a substrate-dependent fashion. Bioinformatics analysis indicated that the OPAL-activity data effectively discriminate known AKT1 substrates from closely related kinase substrates. Our results also enabled predictions of novel AKT1 substrates that suggest new and expanded roles for AKT1 signaling in regulating cellular processes.


Assuntos
Proteínas Proto-Oncogênicas c-akt/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Curva ROC , Especificidade por Substrato
12.
Front Bioeng Biotechnol ; 8: 619252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614606

RESUMO

Protein kinase B (AKT1) is hyper-activated in diverse human tumors. AKT1 is activated by phosphorylation at two key regulatory sites, Thr308 and Ser473. Active AKT1 phosphorylates many, perhaps hundreds, of downstream cellular targets in the cytosol and nucleus. AKT1 is well-known for phosphorylating proteins that regulate cell survival and apoptosis, however, the full catalog of AKT1 substrates remains unknown. Using peptide arrays, we recently discovered that each phosphorylated form of AKT1 (pAKT1S473, pAKT1T308, and ppAKT1S473,T308) has a distinct substrate specificity, and these data were used to predict potential new AKT1 substrates. To test the high-confidence predictions, we synthesized target peptides representing putative AKT1 substrates. Peptides substrates were synthesized by solid phase synthesis and their purity was confirmed by mass spectrometry. Most of the predicted peptides showed phosphate accepting activity similar to or greater than that observed with a peptide derived from a well-established AKT1 substrate, glycogen synthase kinase 3ß (GSK-3ß). Among the novel substrates, AKT1 was most active with peptides representing PIP3-binding protein Rab11 family-interacting protein 2 and cysteinyl leukotriene receptor 1, indicating their potential role in AKT1-dependent cellular signaling. The ppAKT1S473,T308 enzyme was highly selective for peptides containing a patch of basic residues at -5, -4, -3 and aromatic residues (Phe/Tyr) at +1 positions from the phosphorylation site. The pAKT1S473 variant preferred more acidic peptides, Ser or Pro at +4, and was agnostic to the residue at -5. The data further support our hypothesis that Ser473 phosphorylation plays a key role in modulating AKT1 substrate selectivity.

13.
RNA Biol ; 16(8): 1022-1033, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31057087

RESUMO

The de-regulation of microRNAs (miRNAs) is associated with multiple human diseases, yet cellular mechanisms governing miRNA abundance remain largely elusive. Human miR-122 is required for Hepatitis C proliferation, and low miR-122 abundance is associated with hepatic cancer. The adenylyltransferase Gld2 catalyses the post-transcriptional addition of a single adenine residue (A + 1) to the 3'-end of miR-122, enhancing its stability. Gld2 activity is inhibited by binding to the Hepatitis C virus core protein during HepC infection, but no other mechanisms of Gld2 regulation are known. We found that Gld2 activity is regulated by site-specific phosphorylation in its disordered N-terminal domain. We identified two phosphorylation sites (S62, S110) where phosphomimetic substitutions increased Gld2 activity and one site (S116) that markedly reduced activity. Using mass spectrometry, we confirmed that HEK 293 cells readily phosphorylate the N-terminus of Gld2. We identified protein kinase A (PKA) and protein kinase B (Akt1) as the kinases that site-specifically phosphorylate Gld2 at S116, abolishing Gld2-mediated nucleotide addition. The data demonstrate a novel phosphorylation-dependent mechanism to regulate Gld2 activity, revealing tumour suppressor miRNAs as a previously unknown target of Akt1-dependent signalling.


Assuntos
Neoplasias Hepáticas/genética , MicroRNAs/genética , Polinucleotídeo Adenililtransferase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Proliferação de Células/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células HEK293 , Hepatite C/genética , Hepatite C/patologia , Hepatite C/virologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Fosforilação , Domínios Proteicos/genética , Transdução de Sinais/genética
14.
J Biol Chem ; 294(14): 5294-5308, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30643023

RESUMO

Perfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels. On the basis of data from the 1000 Genomes Project, we highlight the unanticipated prevalence of mistranslating tRNA variants in the human population and review studies on synthetic and natural tRNA mutations that cause mistranslation or de-regulate protein synthesis. Although mitochondrial tRNA variants are well known to drive human diseases, including developmental disorders, few studies have revealed a role for human cytoplasmic tRNA mutants in disease. In the context of the unexpectedly large number of tRNA variants in the human population, the emerging literature suggests that human diseases may be affected by natural tRNA variants that cause mistranslation or de-regulate tRNA expression and nucleotide modification. This review highlights examples relevant to genetic disorders, cancer, and neurodegeneration in which cytoplasmic tRNA variants directly cause or exacerbate disease and disease-linked phenotypes in cells, animal models, and humans. In the near future, tRNAs may be recognized as useful genetic markers to predict the onset or severity of human disease.


Assuntos
Citoplasma , Variação Genética , Genoma Humano , Neoplasias , Doenças Neurodegenerativas , RNA Neoplásico , RNA de Transferência , Animais , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
15.
Genes (Basel) ; 9(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205513

RESUMO

Protein kinase B (Akt1) is a proto-oncogene that is overactive in most cancers. Akt1 activation requires phosphorylation at Thr308; phosphorylation at Ser473 further enhances catalytic activity. Akt1 activity is also regulated via interactions between the kinase domain and the N-terminal auto-inhibitory pleckstrin homology (PH) domain. As it was previously difficult to produce Akt1 in site-specific phosphorylated forms, the contribution of each activating phosphorylation site to auto-inhibition was unknown. Using a combination of genetic code expansion and in vivo enzymatic phosphorylation, we produced Akt1 variants containing programmed phosphorylation to probe the interplay between Akt1 phosphorylation status and the auto-inhibitory function of the PH domain. Deletion of the PH domain increased the enzyme activity for all three phosphorylated Akt1 variants. For the doubly phosphorylated enzyme, deletion of the PH domain relieved auto-inhibition by 295-fold. We next found that phosphorylation at Ser473 provided resistance to chemical inhibition by Akti-1/2 inhibitor VIII. The Akti-1/2 inhibitor was most effective against pAkt1T308 and showed four-fold decreased potency with Akt1 variants phosphorylated at Ser473. The data highlight the need to design more potent Akt1 inhibitors that are effective against the doubly phosphorylated and most pathogenic form of Akt1.

17.
J Biol Chem ; 293(27): 10744-10756, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29773654

RESUMO

The proto-oncogene Akt/protein kinase B (PKB) is a pivotal signal transducer for growth and survival. Growth factor stimulation leads to Akt phosphorylation at two regulatory sites (Thr-308 and Ser-473), acutely activating Akt signaling. Delineating the exact role of each regulatory site is, however, technically challenging and has remained elusive. Here, we used genetic code expansion to produce site-specifically phosphorylated Akt1 to dissect the contribution of each regulatory site to Akt1 activity. We achieved recombinant production of full-length Akt1 containing site-specific pThr and pSer residues for the first time. Our analysis of Akt1 site-specifically phosphorylated at either or both sites revealed that phosphorylation at both sites increases the apparent catalytic rate 1500-fold relative to unphosphorylated Akt1, an increase attributable primarily to phosphorylation at Thr-308. Live imaging of COS-7 cells confirmed that phosphorylation of Thr-308, but not Ser-473, is required for cellular activation of Akt. We found in vitro and in the cell that pThr-308 function cannot be mimicked with acidic residues, nor could unphosphorylated Thr-308 be mimicked by an Ala mutation. An Akt1 variant with pSer-308 achieved only partial enzymatic and cellular signaling activity, revealing a critical interaction between the γ-methyl group of pThr-308 and Cys-310 in the Akt1 active site. Thus, pThr-308 is necessary and sufficient to stimulate Akt signaling in cells, and the common use of phosphomimetics is not appropriate for studying the biology of Akt signaling. Our data also indicate that pThr-308 should be regarded as the primary diagnostic marker of Akt activity.


Assuntos
Código Genético , Imagem Molecular/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina/metabolismo , Treonina/metabolismo , Células Cultivadas , Cristalografia por Raios X , Humanos , Mutação , Fosforilação , Conformação Proteica , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Serina/química , Serina/genética , Treonina/química , Treonina/genética
18.
Antioxid Redox Signal ; 29(4): 377-388, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29117711

RESUMO

AIMS: Thioredoxin reductase 1 (TrxR1) is a cancer target and essential selenoprotein that defends the cell against reactive oxygen species and regulates cellular signaling and redox pathways. Previous cell-based studies correlated TrxR1 acetylation with modulated cellular reduction activity, yet the function of specific acetylation sites on TrxR1 remains unknown. INNOVATION: We produced site-specifically acetylated TrxR1 variants that also contain selenocysteine (Sec). We demonstrated efficient high-fidelity protein synthesis with 22 different amino acids by simultaneous UAG codon reassignment to Nɛ-acetyl-lysine and UGA codon recoding to Sec. RESULTS: We characterized TrxR1 variants acetylated at physiologically relevant sites and found that single acetylation sites increased TrxR1 activity, enhancing the apparent catalytic rate up to 2.7-fold. The activity increase in acetylated TrxR1 (acTrxR1) is reversible and is reduced following deacetylation with histone deacetylase. CONCLUSION: Here we present a novel mechanism through which acetylation increases TrxR1 activity by destabilizing low-activity TrxR1 multimers, increasing the population of active dimeric TrxR1. Antioxid. Redox Signal. 29, 377-388.


Assuntos
Tiorredoxina Redutase 1/química , Tiorredoxina Redutase 1/metabolismo , Acetilação , Humanos , Modelos Moleculares , Tiorredoxina Redutase 1/genética
19.
FEBS Lett ; 587(20): 3360-4, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24021645

RESUMO

Class I and II aminoacyl-tRNA synthetases (AARSs) attach amino acids to the 2'- and 3'-OH of the tRNA terminal adenosine, respectively. One exception is phenylalanyl-tRNA synthetase (PheRS), which belongs to Class II but attaches phenylalanine to the 2'-OH. Here we show that two Class II AARSs, O-phosphoseryl- (SepRS) and pyrrolysyl-tRNA (PylRS) synthetases, aminoacylate the 2'- and 3'-OH, respectively. Structure-based-phylogenetic analysis reveals that SepRS is more closely related to PheRS than PylRS, suggesting that the idiosyncratic feature of 2'-OH acylation evolved after the split between PheRS and PylRS. Our work completes the understanding of tRNA aminoacylation positions for the 22 natural AARSs.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Fenilalanina-tRNA Ligase/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Aminoacilação/genética , Aminoacilação/fisiologia , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/classificação , Fenilalanina-tRNA Ligase/genética , Filogenia
20.
Nucleic Acids Res ; 40(1): 333-44, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21890903

RESUMO

Histidine transfer RNA (tRNA) is unique among tRNA species as it carries an additional nucleotide at its 5' terminus. This unusual G(-1) residue is the major tRNA(His) identity element, and essential for recognition by the cognate histidyl-tRNA synthetase to allow efficient His-tRNA(His) formation. In many organisms G(-1) is added post-transcriptionally as part of the tRNA maturation process. tRNA(His) guanylyltransferase (Thg1) specifically adds the guanylyate residue by recognizing the tRNA(His) anticodon. Thg1 homologs from all three domains of life have been the subject of exciting research that gave rise to a detailed biochemical, structural and phylogenetic enzyme characterization. Thg1 homologs are phylogenetically classified into eukaryal- and archaeal-type enzymes differing characteristically in their cofactor requirements and specificity. Yeast Thg1 displays a unique but limited ability to add 2-3 G or C residues to mutant tRNA substrates, thus catalyzing a 3' → 5' RNA polymerization. Archaeal-type Thg1, which has been horizontally transferred to certain bacteria and few eukarya, displays a more relaxed substrate range and may play additional roles in tRNA editing and repair. The crystal structure of human Thg1 revealed a fascinating structural similarity to 5' → 3' polymerases, indicating that Thg1 derives from classical polymerases and evolved to assume its specific function in tRNA(His) processing.


Assuntos
Nucleotidiltransferases/metabolismo , RNA de Transferência de Histidina/química , RNA de Transferência de Histidina/metabolismo , Trifosfato de Adenosina/metabolismo , Anticódon , Archaea/enzimologia , Bactérias/enzimologia , Sequência de Bases , Evolução Molecular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Nucleotidiltransferases/classificação , Nucleotidiltransferases/genética , Pirofosfatases/metabolismo , Edição de RNA , Leveduras/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA