Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 31(9): 3848-3857, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487283

RESUMO

Bile acids and epithelial-derived human ß-defensins (HßDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HßD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HßD1 and HßD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HßD1 and HßD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 µM), but not by the farnesoid X receptor agonist, GW4064 (10 µM). INT-777 also stimulated colonic HßD1 and HßD2 release from wild-type, but not Takeda GPCR 5-/-, mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 µM), inhibited DCA-induced HßD2, but not HßD1, release. We conclude that bile acids can differentially regulate colonic epithelial HßD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human ß-defensin-1 and -2 secretion by colonic epithelial cells.


Assuntos
Colo/citologia , Ácido Desoxicólico/farmacologia , Mucosa Intestinal/citologia , Ácido Ursodesoxicólico/farmacologia , beta-Defensinas/metabolismo , Animais , Linhagem Celular , Ácido Desoxicólico/administração & dosagem , Relação Dose-Resposta a Droga , Células Epiteliais , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Técnicas de Cultura de Tecidos , Ácido Ursodesoxicólico/administração & dosagem , beta-Defensinas/genética
2.
Am J Physiol Gastrointest Liver Physiol ; 311(2): G334-41, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27340129

RESUMO

Monocytes are critical to the pathogenesis of inflammatory bowel disease (IBD) as they infiltrate the mucosa and release cytokines that drive the inflammatory response. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid with anti-inflammatory actions, has been proposed as a potential new therapy for IBD. However, its effects on monocyte function are not yet known. Primary monocytes from healthy volunteers or cultured U937 monocytes were treated with either the proinflammatory cytokine, TNFα (5 ng/ml) or the bacterial endotoxin, lipopolysaccharide (LPS; 1 µg/ml) for 24 h, in the absence or presence of UDCA (25-100 µM). IL-8 release into the supernatant was measured by ELISA. mRNA levels were quantified by qPCR and changes in cell signaling proteins were determined by Western blotting. Toxicity was assessed by measuring lactate dehydrogenase (LDH) release. UDCA treatment significantly attenuated TNFα-, but not LPS-driven, release of IL-8 from both primary and cultured monocytes. UDCA inhibition of TNFα-driven responses was associated with reduced IL-8 mRNA expression. Both TNFα and LPS stimulated NFκB activation in monocytes, while IL-8 release in response to both cytokines was attenuated by an NFκB inhibitor, BMS-345541. Interestingly, UDCA inhibited TNFα-, but not LPS-stimulated, NFκB activation. Finally, TNFα, but not LPS, induced phosphorylation of TNF receptor associated factor (TRAF2), while UDCA cotreatment attenuated this response. We conclude that UDCA specifically inhibits TNFα-induced IL-8 release from monocytes by inhibiting TRAF2 activation. Since such actions would serve to dampen mucosal immune responses in vivo, our data support the therapeutic potential of UDCA for IBD.


Assuntos
Imunossupressores/farmacologia , Interleucina-8/metabolismo , Monócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Ácido Ursodesoxicólico/farmacologia , Regulação da Expressão Gênica , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Interleucina-8/genética , Interleucina-8/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/imunologia , Monócitos/metabolismo , NF-kappa B/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Fator 2 Associado a Receptor de TNF/metabolismo , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA