Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Transplantation ; 107(9): e222-e233, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528526

RESUMO

BACKGROUND: Type 1 diabetes is an autoimmune disease characterized by T-cell-mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include the use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft-versus-host disease (xGVHD). METHODS: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4 + and CD8 + T cells and tested their ability to reject HLA-A2 + islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T-cell engraftment, islet function, and xGVHD were assessed longitudinally. RESULTS: The speed and consistency of A2-CAR T-cell-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of coinjected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, coinjection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2 + human islets within 1 wk and without xGVHD for 12 wk. CONCLUSIONS: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of islet-replacement therapies.


Assuntos
Doença Enxerto-Hospedeiro , Insulinas , Transplante das Ilhotas Pancreáticas , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Antígeno HLA-A2 , Leucócitos Mononucleares , Rejeição de Enxerto/prevenção & controle
2.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865123

RESUMO

Background: Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell mediated destruction of pancreatic beta-cells. Islet transplantation is an effective therapy, but its success is limited by islet quality and availability along with the need for immunosuppression. New approaches include use of stem cell-derived insulin-producing cells and immunomodulatory therapies, but a limitation is the paucity of reproducible animal models in which interactions between human immune cells and insulin-producing cells can be studied without the complication of xenogeneic graft- versus -host disease (xGVHD). Methods: We expressed an HLA-A2-specific chimeric antigen receptor (A2-CAR) in human CD4+ and CD8+ T cells and tested their ability to reject HLA-A2+ islets transplanted under the kidney capsule or anterior chamber of the eye of immunodeficient mice. T cell engraftment, islet function and xGVHD were assessed longitudinally. Results: The speed and consistency of A2-CAR T cells-mediated islet rejection varied depending on the number of A2-CAR T cells and the absence/presence of co-injected peripheral blood mononuclear cells (PBMCs). When <3 million A2-CAR T cells were injected, co-injection of PBMCs accelerated islet rejection but also induced xGVHD. In the absence of PBMCs, injection of 3 million A2-CAR T cells caused synchronous rejection of A2+ human islets within 1 week and without xGVHD for 12 weeks. Conclusions: Injection of A2-CAR T cells can be used to study rejection of human insulin-producing cells without the complication of xGVHD. The rapidity and synchrony of rejection will facilitate in vivo screening of new therapies designed to improve the success of isletreplacement therapies.

3.
Endocrinology ; 163(6)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35435956

RESUMO

Up to 6% of diabetes has a monogenic cause including mutations in the insulin gene, and patients are candidates for a gene therapy. Using a mouse model of permanent neonatal diabetes, we assessed the efficacy of an adeno-associated virus (AAV)-mediated gene therapy. We used AAVs with a rat insulin 1 promoter (Ins1) regulating a human insulin gene (INS; AAV Ins1-INS) or native mouse insulin 1 (Ins1; AAV Ins-Ins1) to deliver an insulin gene to ß-cells of constitutive insulin null mice (Ins1-/-Ins2-/-) and adult inducible insulin-deficient mice [Ins1-/-Ins2f/f PdxCreER and Ins1-/-Ins2f/f mice administered AAV Ins1-Cre)]. Although AAV Ins1-INS could successfully infect and confer insulin expression to ß-cells, insulin null ß-cells had a prohormone processing defect. Secretion of abundant proinsulin transiently reversed diabetes. We reattempted therapy with AAV Ins1-Ins1, but Ins1-/-Ins2-/- ß-cells still had a processing defect of both replaced Ins1 and pro-islet amyloid polypeptide (proIAPP). In adult inducible models, ß-cells that lost insulin expression developed a processing defect that resulted in impaired proIAPP processing and elevated circulating proIAPP, and cells infected with AAV Ins1-Ins1 to rescue insulin expression secreted proinsulin. We assessed the subcellular localization of prohormone convertase 1/3 (PC1/3) and detected defective sorting of PC1/3 to glycogen-containing vacuoles and retention in the endoplasmic reticulum as a potential mechanism underlying defective processing. We provide evidence that persistent production of endogenous proinsulin within ß-cells is necessary for ß-cells to be able to properly store and process proinsulin.


Assuntos
Células Secretoras de Insulina , Proinsulina , Animais , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Proinsulina/genética , Proinsulina/metabolismo , Ratos
4.
Cell Rep Med ; 2(11): 100434, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34841287

RESUMO

miRNAs have crucial functions in many biological processes and are candidate biomarkers of disease. Here, we show that miR-216a is a conserved, pancreas-specific miRNA with important roles in pancreatic islet and acinar cells. Deletion of miR-216a in mice leads to a reduction in islet size, ß-cell mass, and insulin levels. Single-cell RNA sequencing reveals a subpopulation of ß-cells with upregulated acinar cell markers under a high-fat diet. miR-216a is induced by TGF-ß signaling, and inhibition of miR-216a increases apoptosis and decreases cell proliferation in pancreatic cells. Deletion of miR-216a in the pancreatic cancer-prone mouse line KrasG12D;Ptf1aCreER reduces the propensity of pancreatic cancer precursor lesions. Notably, circulating miR-216a levels are elevated in both mice and humans with pancreatic cancer. Collectively, our study gives insights into how ß-cell mass and acinar cell growth are modulated by a pancreas-specific miRNA and also suggests miR-216a as a potential biomarker for diagnosis of pancreatic diseases.


Assuntos
Progressão da Doença , Deleção de Genes , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular , Dieta Hiperlipídica , Humanos , Secreção de Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Especificidade de Órgãos , Ratos
5.
Sci Rep ; 10(1): 10518, 2020 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601405

RESUMO

In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on ß-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired ß-cell function, and high cost of animal production. Inducible estrogen receptor conjugated Cre models face leaky recombination and confounding effects of tamoxifen. As an alternative, we characterize an adeno associated virus (AAV) with a rat insulin 1 promoter driving Cre recombinase (AAV8 Ins1-Cre) that is economical and rapid to implement, and has limited caveats. Intraperitoneal AAV8 Ins1-Cre produced efficient ß-cell recombination, alongside some hepatic, exocrine pancreas, α-cell, δ-cell, and hypothalamic recombination. Delivery of lower doses via the pancreatic duct retained good rates of ß-cell recombination and limited rates of off-target recombination. Unlike inducible Cre in transgenic mice, AAV8 Ins1-Cre required no tamoxifen and premature recombination was avoided. We demonstrate the utility of this technology by inducing hyperglycemia in inducible insulin knockout mice (Ins1-/-;Ins2f/f). AAV-mediated expression of Cre in ß-cells provides an effective alternative to transgenic approaches for inducible knockout studies.


Assuntos
Dependovirus , Células Secretoras de Insulina/metabolismo , Insulina/genética , Regiões Promotoras Genéticas , Recombinação Genética , Animais , Insulina/metabolismo , Integrases , Camundongos , Camundongos Transgênicos
6.
Diabetologia ; 63(1): 162-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31776611

RESUMO

AIMS/HYPOTHESIS: Exposure to environmental pollution has been consistently linked to diabetes incidence in humans, but the potential causative mechanisms remain unclear. Given the critical role of regulated insulin secretion in maintaining glucose homeostasis, environmental chemicals that reach the endocrine pancreas and cause beta cell injury are of particular concern. We propose that cytochrome P450 (CYP) enzymes, which are involved in metabolising xenobiotics, could serve as a useful biomarker for direct exposure of islets to pollutants. Moreover, functional CYP enzymes in islets could also impact beta cell physiology. The aim of this study was to determine whether CYP1A enzymes are activated in islets following direct or systemic exposure to environmental pollutants. METHODS: Immortalised liver (HepG2) and rodent pancreatic endocrine cell lines (MIN6, ßTC-6, INS1, α-TC1, α-TC3), as well as human islets, were treated in vitro with known CYP1A inducers 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (3-MC). In addition, mice were injected with either a single high dose of TCDD or multiple low doses of TCDD in vivo, and islets were isolated 1, 7 or 14 days later. RESULTS: CYP1A enzymes were not activated in any of the immortalised beta or alpha cell lines tested. However, both 3-MC and TCDD potently induced CYP1A1 gene expression and modestly increased CYP1A1 enzyme activity in human islets after 48 h. The induction of CYP1A1 in human islets by TCDD was prevented by cotreatment with a cytokine mixture. After a systemic single high-dose TCDD injection, CYP1A1 enzyme activity was induced in mouse islets ~2-fold, ~40-fold and ~80-fold compared with controls after 1, 7 and 14 days, respectively, in vivo. Multiple low-dose TCDD exposure in vivo also caused significant upregulation of Cyp1a1 in mouse islets. Direct TCDD exposure to human and mouse islets in vitro resulted in suppressed glucose-induced insulin secretion. A single high-dose TCDD injection resulted in lower plasma insulin levels, as well as a pronounced increase in beta cell death. CONCLUSIONS/INTERPRETATION: Transient exposure to TCDD results in long-term upregulation of CYP1A1 enzyme activity in islets. This provides evidence for direct exposure of islets to lipophilic pollutants in vivo and may have implications for islet physiology.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Poluentes Ambientais/toxicidade , Animais , Glicemia/efeitos dos fármacos , Linhagem Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dibenzodioxinas Policloradas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real
7.
Diabetes ; 65(5): 1297-309, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26740603

RESUMO

Pancreatic progenitors derived from human embryonic stem cells (hESCs) are a potential source of transplantable cells for treating diabetes and are currently being tested in clinical trials. Yet, how the milieu of pancreatic progenitor cells, including exposure to different factors after transplant, may influence their maturation remains unclear. Here, we examined the effect of thyroid dysregulation on the development of hESC-derived progenitor cells in vivo. Hypothyroidism was generated in SCID-beige mice using an iodine-deficient diet containing 0.15% propyl-2-thiouracil, and hyperthyroidism was generated by addition of L-thyroxine (T4) to drinking water. All mice received macroencapsulated hESC-derived progenitor cells, and thyroid dysfunction was maintained for the duration of the study ("chronic") or for 4 weeks posttransplant ("acute"). Acute hyperthyroidism did not affect graft function, but acute hypothyroidism transiently impaired human C-peptide secretion at 16 weeks posttransplant. Chronic hypothyroidism resulted in severely blunted basal human C-peptide secretion, impaired glucose-stimulated insulin secretion, and elevated plasma glucagon levels. Grafts from chronic hypothyroid mice contained fewer ß-cells, heterogenous MAFA expression, and increased glucagon(+) and ghrelin(+) cells compared to grafts from euthyroid mice. Taken together, these data suggest that long-term thyroid hormone deficiency may drive the differentiation of human pancreatic progenitor cells toward α- and ε-cell lineages at the expense of ß-cell formation.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 1/cirurgia , Modelos Animais de Doenças , Xenoenxertos/patologia , Células-Tronco Embrionárias Humanas/transplante , Hipotireoidismo/complicações , Células Secretoras de Insulina/transplante , Animais , Antitireóideos/intoxicação , Biomarcadores/sangue , Biomarcadores/metabolismo , Linhagem Celular , Células Imobilizadas/citologia , Células Imobilizadas/patologia , Células Imobilizadas/transplante , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Xenoenxertos/citologia , Xenoenxertos/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Hipertireoidismo/induzido quimicamente , Hipertireoidismo/complicações , Hipotireoidismo/etiologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Iodo/deficiência , Masculino , Camundongos SCID , Propiltiouracila/intoxicação , Distribuição Aleatória , Tiroxina/intoxicação , Transplante Heterólogo , Transplante Heterotópico
8.
Stem Cell Reports ; 4(4): 605-20, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25801507

RESUMO

Human embryonic stem cell (hESC)-derived pancreatic progenitor cells effectively reverse hyperglycemia in rodent models of type 1 diabetes, but their capacity to treat type 2 diabetes has not been reported. An immunodeficient model of type 2 diabetes was generated by high-fat diet (HFD) feeding in SCID-beige mice. Exposure to HFDs did not impact the maturation of macroencapsulated pancreatic progenitor cells into glucose-responsive insulin-secreting cells following transplantation, and the cell therapy improved glucose tolerance in HFD-fed transplant recipients after 24 weeks. However, since diet-induced hyperglycemia and obesity were not fully ameliorated by transplantation alone, a second cohort of HFD-fed mice was treated with pancreatic progenitor cells combined with one of three antidiabetic drugs. All combination therapies rapidly improved body weight and co-treatment with either sitagliptin or metformin improved hyperglycemia after only 12 weeks. Therefore, a stem cell-based therapy may be effective for treating type 2 diabetes, particularly in combination with antidiabetic drugs.


Assuntos
Diferenciação Celular , Diabetes Mellitus Tipo 2/etiologia , Dieta/efeitos adversos , Células-Tronco Embrionárias Humanas/citologia , Hipoglicemiantes/farmacologia , Obesidade/etiologia , Pâncreas/citologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Fígado/anatomia & histologia , Fígado/metabolismo , Camundongos , Camundongos SCID , Obesidade/metabolismo , Obesidade/terapia , Tamanho do Órgão , Fenótipo
9.
Nat Biotechnol ; 32(11): 1121-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25211370

RESUMO

Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Diabetes Mellitus/terapia , Insulina/metabolismo , Células-Tronco Pluripotentes/transplante , Animais , Diferenciação Celular , Diabetes Mellitus/patologia , Células-Tronco Embrionárias/transplante , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/transplante , Camundongos , Pâncreas/metabolismo , Pâncreas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA