Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 16(10): 107, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33026554

RESUMO

INTRODUCTION: It is widely but erroneously believed that drugs get into cells by passing through the phospholipid bilayer portion of the plasma and other membranes. Much evidence shows, however, that this is not the case, and that drugs cross biomembranes by hitchhiking on transporters for other natural molecules to which these drugs are structurally similar. Untargeted metabolomics can provide a method for determining the differential uptake of such metabolites. OBJECTIVES: Blood serum contains many thousands of molecules and provides a convenient source of biologically relevant metabolites. Our objective was to detect and identify metabolites present in serum, but to also establish a method capable of measure their uptake and secretion by different cell lines. METHODS: We develop an untargeted LC-MS/MS method to detect a broad range of compounds present in human serum. We apply this to the analysis of the time course of the uptake and secretion of metabolites in serum by several human cell lines, by analysing changes in the serum that represents the extracellular phase (the 'exometabolome' or metabolic footprint). RESULTS: Our method measures some 4000-5000 metabolic features in both positive and negative electrospray ionisation modes. We show that the metabolic footprints of different cell lines differ greatly from each other. CONCLUSION: Our new, 15-min untargeted metabolome method allows for the robust and convenient measurement of differences in the uptake of serum compounds by cell lines following incubation in serum. This will enable future research to study these differences in multiple cell lines that will relate this to transporter expression, thereby advancing our knowledge of transporter substrates, both natural and xenobiotic compounds.


Assuntos
Metabolômica/métodos , Plasma/química , Animais , Linhagem Celular/metabolismo , Linhagem Celular Tumoral/metabolismo , Membrana Celular/metabolismo , Cromatografia Líquida/métodos , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Mamíferos/metabolismo , Proteínas de Membrana/metabolismo , Metaboloma , Fosfolipídeos/metabolismo , Espectrometria de Massas em Tandem/métodos
2.
Front Pharmacol ; 8: 155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28396636

RESUMO

The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a "binary weapon" strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three "hits." The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment "hits" served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.

3.
Metabolomics ; 11: 9-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25598764

RESUMO

Phenotyping of 1,200 'healthy' adults from the UK has been performed through the investigation of diverse classes of hydrophilic and lipophilic metabolites present in serum by applying a series of chromatography-mass spectrometry platforms. These data were made robust to instrumental drift by numerical correction; this was prerequisite to allow detection of subtle metabolic differences. The variation in observed metabolite relative concentrations between the 1,200 subjects ranged from less than 5 % to more than 200 %. Variations in metabolites could be related to differences in gender, age, BMI, blood pressure, and smoking. Investigations suggest that a sample size of 600 subjects is both necessary and sufficient for robust analysis of these data. Overall, this is a large scale and non-targeted chromatographic MS-based metabolomics study, using samples from over 1,000 individuals, to provide a comprehensive measurement of their serum metabolomes. This work provides an important baseline or reference dataset for understanding the 'normal' relative concentrations and variation in the human serum metabolome. These may be related to our increasing knowledge of the human metabolic network map. Information on the Husermet study is available at http://www.husermet.org/. Importantly, all of the data are made freely available at MetaboLights (http://www.ebi.ac.uk/metabolights/).

4.
Anal Chem ; 79(2): 464-76, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17222009

RESUMO

Metabolomics seeks to measure potentially all the metabolites in a biological sample, and consequently, we need to develop and optimize methods to increase significantly the number of metabolites we can detect. We extended the closed-loop (iterative, automated) optimization system that we had previously developed for one-dimensional GC-TOF-MS (O'Hagan, S.; Dunn, W. B.; Brown, M.; Knowles, J. D.; Kell, D. B. Anal. Chem. 2005, 77, 290-303) to comprehensive two-dimensional (GCxGC) chromatography. The heuristic approach used was a multiobjective version of the efficient global optimization algorithm. In just 300 automated runs, we improved the number of metabolites observable relative to those in 1D GC by some 3-fold. The optimized conditions allowed for the detection of over 4000 raw peaks, of which some 1800 were considered to be real metabolite peaks and not impurities or peaks with a signal/noise ratio of less than 5. A variety of computational methods served to explain the basis for the improvement. This closed-loop optimization strategy is a generic and powerful approach for the optimization of any analytical instrumentation.


Assuntos
Biomarcadores/sangue , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cromatografia Gasosa-Espectrometria de Massas/normas , Biomarcadores/metabolismo , Humanos
5.
Anal Chem ; 77(1): 290-303, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15623308

RESUMO

The number of instrumental parameters controlling modern analytical apparatus can be substantial, and varying them systematically to optimize a particular chromatographic separation, for example, is out of the question because of the astronomical number of combinations that are possible (i.e., the "search space" is very large). However, heuristic methods, such as those based on evolutionary computing, can be used to explore such search spaces efficiently. We here describe the implementation of an entirely automated (closed-loop) strategy for doing this and apply it to the optimization of gas chromatographic separations of the metabolomes of human serum and of yeast fermentation broths. Without human intervention, the Robot Chromatographer system (i) initializes the settings on the instrument, (ii) controls the analytical run, (iii) extracts the variables defining the analytical performance (specifically the number of peaks, signal/noise ratio, and run time), (iv) chooses (via the PESA-II multiobjective genetic algorithm), and (v) programs the next series of instrumental settings, the whole continuing in an iterative cycle until suitable sets of optimal conditions have been established. Genetic programming was used to remove noise peaks and to establish the basis for the improvements observed. The system showed that the number of peaks observable depended enormously on the conditions used and served to increase them by as much as 3-fold (e.g., to over 950 in human serum) while in many cases maintaining or reducing the run time and preserving excellent signal/noise ratios. The evolutionary closed-loop machine learning strategy we describe is generic to any type of analytical optimization.


Assuntos
Fermentação , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Soro/química , Leveduras/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA