Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930429

RESUMO

Brucellosis is an important bacterial disease of livestock and the most common zoonotic disease. The current vaccines are effective but unsafe, as they result in animal abortions and are pathogenic to humans. Virus-like particles are being investigated as molecular scaffolds for foreign antigen presentation to the immune system. Here, we sought to develop a new-generation vaccine by presenting selected Brucella melitensis T cell epitopes on the surface of Orbivirus core-like particles (CLPs) and transiently expressing these chimeric particles in Nicotiana benthamiana plants. We successfully demonstrated the assembly of five chimeric CLPs in N. benthamiana plants, with each CLP presenting a different T cell epitope. The safety and protective efficacy of three of the highest-yielding CLPs was investigated in a mouse model of brucellosis. All three plant-expressed chimeric CLPs were safe when inoculated into BALB/c mice at specific antigen doses. However, only one chimeric CLP induced protection against the virulent Brucella strain challenge equivalent to the protection induced by the commercial Rev1 vaccine. Here, we have successfully shown the assembly, safety and protective efficacy of plant-expressed chimeric CLPs presenting B. melitensis T cell epitopes. This is the first step in the development of a safe and efficacious subunit vaccine against brucellosis.

2.
Vaccine ; 42(4): 738-744, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38238112

RESUMO

In the quest for heightened protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, we engineered a prototype vaccine utilizing the plant expression system of Nicotiana benthamiana, to produce a recombinant SARS-CoV-2 virus-like particle (VLP) vaccine presenting the S-protein from the Beta (B.1.351) variant of concern (VOC). This innovative vaccine, formulated with either a squalene oil-in-water emulsion or a synthetic CpG oligodeoxynucleotide adjuvant, demonstrated efficacy in a golden Syrian Hamster challenge model. The Beta VLP vaccine induced a robust humoral immune response, with serum exhibiting neutralization not only against SARS-CoV-2 Beta but also cross-neutralizing Delta and Omicron pseudoviruses. Protective efficacy was demonstrated, evidenced by reduced viral RNA copies and mitigated weight loss and lung damage compared to controls. This compelling data instills confidence in the creation of a versatile platform for the local manufacturing of potential pan-sarbecovirus vaccines, against evolving viral threats.


Assuntos
COVID-19 , Animais , Cricetinae , Humanos , COVID-19/prevenção & controle , Mesocricetus , SARS-CoV-2 , Vacinas contra COVID-19/genética , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Anticorpos Neutralizantes
3.
Poult Sci ; 102(10): 102953, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542940

RESUMO

Infectious bronchitis (IB) Gammacoronavirus causes a highly contagious respiratory disease in chickens that is listed by the World Organisation for Animal Health (WOAH). Its high mutation ability has resulted in numerous variants against which the commercially available live or recombinant vaccines singly offer limited protection. Agrobacterium-mediated transient expression in Nicotiana benthamiana (tobacco) plants was used here to produce a virus-like particle (VLP) vaccine expressing a modified full-length IBV spike (S) protein of a QX-like IB variant. In a challenge study with the homologous live IB QX-like virus, VLP-vaccinated birds produced S protein-specific antibodies comparable to those produced by live-vaccinated birds seroconverting with mean geometric titers of 6.8 and 7.2 log2, respectively. The VLP-vaccinated birds had reduced oropharyngeal and cloacal viral shedding compared to an unvaccinated challenged control and were more protected against tracheal ciliostasis than the live-vaccinated birds. While the results appeared similar, plant-produced IB VLPs are safer, more affordable, easier to produce and update to antigenically match any emerging IB variant, making them a more suitable alternative to IBV control than live-attenuated vaccines.


Assuntos
Bronquite , Infecções por Coronavirus , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Galinhas , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Organismos Livres de Patógenos Específicos , Bronquite/veterinária , Vacinas Atenuadas
4.
PLoS One ; 18(7): e0288970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37471377

RESUMO

Infectious bronchitis (IB) is a highly contagious, acute respiratory disease in chickens, with a severe economic impact on poultry production globally. The rapid emergence of regional variants of this Gammacoronavirus warrants new vaccine approaches that are more humane and rapid to produce than the current embryonated chicken egg-based method used for IB variant vaccine propagation (chemically-inactivated whole viruses). The production of virus-like particles (VLPs) expressing the Spike (S) glycoprotein, the major antigen which induces neutralizing antibodies, has not been achieved in planta up until now. In this study, using the Agrobacterium-mediated Nicotiana benthamiana (tobacco plant) transient expression system, the highest levels of VLPs displaying a modified S protein of a QX-like IB variant were obtained when the native transmembrane (TM) domain and cytoplasmic tail were substituted with that of the Newcastle disease virus (NDV) fusion glycoprotein, co-infiltrated with the NDV Matrix protein. In comparison, the native IB modified S co-infiltrated with IB virus membrane, envelope and nucleocapsid proteins, or substituted with the TM and CT of an H6-subtype influenza A virus hemagglutinin glycoprotein yielded lower VLP expression levels. Strong immunogenicity was confirmed in specific pathogen free chickens immunized intramuscularly with VLPs adjuvanted with Emulsigen®-P, where birds that received doses of 5 µg or 20 µg (S protein content) seroconverted after two weeks with mean hemaggluttination inhibition titres of 9.1 and 10 log2, respectively. Plant-produced IB VLP variant vaccines are safer, more rapid and cost effective to produce than VLPs produced in insect cell expression systems or the traditional egg-produced inactivated whole virus oil emulsion vaccines currently in use, with great potential for improved IB disease control in future.


Assuntos
Bronquite , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Vírus da Bronquite Infecciosa/genética , Nicotiana/genética , Nicotiana/metabolismo , Aves Domésticas , Galinhas , Proteínas Virais de Fusão , Vírus da Doença de Newcastle , Anticorpos Antivirais/metabolismo
5.
Front Plant Sci ; 14: 1130910, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875611

RESUMO

Newcastle disease (ND) is a highly contagious viral respiratory and neurological disease that has a severe impact on poultry production worldwide. In the present study, an expression platform was established for the transient production in N.bethamiana of ND virus-like particles (VLPs) for use as vaccines against ND. The expression of the ND Fusion (F) and/or Hemagglutinin-neuraminidase (HN) proteins of a genotype VII.2 strain formed ND VLPs in planta as visualized under the transmission electron microscope, and HN-containing VLPs agglutinated chicken erythrocytes with hemagglutination (HA) titres of up to 13 log2.The immunogenicity of the partially-purified ND VLPs was confirmed in specific-pathogen-free White leghorn chickens. Birds receiving a single intramuscular immunization with 1024 HA units (10 log2) of the F/HN ND VLPs administered with 20% [v/v] Emulsigen®-P adjuvant, seroconverted after 14 days with F- and HN-specific antibodies at ELISA titres of 5705.17 and HI geometric mean titres (GMTs) of 6.2 log2, respectively. Furthermore, these ND-specific antibodies successfully inhibited viral replication in vitro of two antigenically closely-related ND virus isolates, with virus-neutralization test GMTs of 3.47 and 3.4, respectively. Plant-produced ND VLPs have great potential as antigen-matched vaccines for poultry and other avian species that are highly immunogenic, cost-effective, and facilitate prompt updating to ensure improved protection against emerging ND field viruses.

6.
Vaccine ; 41(13): 2261-2269, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36868876

RESUMO

The outbreak of the SARS-CoV-2 global pandemic heightened the pace of vaccine development with various vaccines being approved for human use in a span of 24 months. The SARS-CoV-2 trimeric spike (S) surface glycoprotein, which mediates viral entry by binding to ACE2, is a key target for vaccines and therapeutic antibodies. Plant biopharming is recognized for its scalability, speed, versatility, and low production costs and is an increasingly promising molecular pharming vaccine platform for human health. We developed Nicotiana benthamiana-produced SARS-CoV-2 virus-like particle (VLP) vaccine candidates displaying the S-protein of the Beta (B.1.351) variant of concern (VOC), which triggered cross-reactive neutralising antibodies against Delta (B.1.617.2) and Omicron (B.1.1.529) VOCs. In this study, immunogenicity of the VLPs (5 µg per dose) adjuvanted with three independent adjuvants i.e. oil-in-water based adjuvants SEPIVAC SWETM (Seppic, France) and "AS IS" (Afrigen, South Africa) as well as a slow-release synthetic oligodeoxynucleotide (ODN) adjuvant designated NADA (Disease Control Africa, South Africa) were evaluated in New Zealand white rabbits and resulted in robust neutralising antibody responses after booster vaccination, ranging from 1:5341 to as high as 1:18204. Serum neutralising antibodies elicited by the Beta variant VLP vaccine also showed cross-neutralisation against the Delta and Omicron variants with neutralising titres ranging from 1:1702 and 1:971, respectively. Collectively, these data provide support for the development of a plant-produced VLP based candidate vaccine against SARS-CoV-2 based on circulating variants of concern.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Coelhos , Animais , Humanos , SARS-CoV-2 , Agricultura Molecular , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Neutralizantes , África do Sul , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da Vacina
7.
Vaccine ; 40(35): 5160-5169, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35902279

RESUMO

Next generation vaccines have the capability to contribute to and revolutionise the veterinary vaccine industry. African horse sickness (AHS) is caused by an arbovirus infection and is characterised by respiratory distress and/or cardiovascular failure and is lethal to horses. Mandatory annual vaccination in endemic areas curtails disease occurrence and severity. However, development of a next generation AHSV vaccine, which is both safe and efficacious, has been an objective globally for years. In this study, both AHSV serotype 5 chimaeric virus-like particles (VLPs) and soluble viral protein 2 (VP2) were successfully produced in Nicotiana benthamiana ΔXT/FT plants, partially purified and validated by gel electrophoresis, transmission electron microscopy and liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing before vaccine formulation. IFNAR-/- mice vaccinated with the adjuvanted VLPs or VP2 antigens in a 10 µg prime-boost regime resulted in high titres of antibodies confirmed by both serum neutralising tests (SNTs) and enzyme-linked immunosorbent assays (ELISA). Although previous studies reported high titres of antibodies in horses when vaccinated with plant-produced AHS homogenous VLPs, this is the first study demonstrating the protective efficacy of both AHSV serotype 5 chimaeric VLPs and soluble AHSV-5 VP2 as vaccine candidates. Complementary to this, coating ELISA plates with the soluble VP2 has the potential to underpin serotype-specific serological assays.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Proteínas do Capsídeo , Cromatografia Líquida , Cavalos , Camundongos , Sorogrupo , Espectrometria de Massas em Tandem , Proteínas Virais
8.
Plant Biotechnol J ; 18(2): 502-512, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31350931

RESUMO

The efficacy, safety, speed, scalability and cost-effectiveness of producing hemagglutinin-based virus-like particle (VLP) vaccines in plants are well-established for human influenza, but untested for the massive poultry influenza vaccine market that remains dominated by traditional egg-grown oil-emulsion whole inactivated virus vaccines. For optimal efficacy, a vaccine should be closely antigenically matched to the field strain, requiring that influenza A vaccines be updated regularly. In this study, an H6 subtype VLP transiently expressed in Nicotiana benthamiana was formulated into a vaccine and evaluated for efficacy in chickens against challenge with a heterologous H6N2 virus. A single dose of the plant-produced H6 VLP vaccine elicited an immune response comparable to two doses of a commercial inactivated H6N2 vaccine, with mean hemagglutination inhibition titres of 9.3 log2 and 8.8 log2 , respectively. Compared to the non-vaccinated control, the H6 VLP vaccine significantly reduced the proportion of shedders and the magnitude of viral shedding by >100-fold in the oropharynx and >6-fold in the cloaca, and shortened oropharyngeal viral shedding by at least a week. Despite its potency, the cost of the antigenic mismatch between the inactivated H6N2 vaccine and challenge strain was evident not only in this vaccine's failure to reduce viral shedding compared to the non-vaccinated group, but its apparent exacerbation of oropharyngeal viral shedding until 21 days post-challenge. We estimate that a kilogram of plant leaf material can produce H6 VLP vaccines sufficient for between 5000 and 30 000 chickens, depending on the effective dose and whether one or two immunizations are administered.


Assuntos
Anticorpos Antivirais , Vírus da Influenza A , Vacinas contra Influenza , Doenças das Aves Domésticas , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais/sangue , Galinhas , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Doenças das Aves Domésticas/prevenção & controle , Nicotiana/genética , Nicotiana/metabolismo , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/normas , Eliminação de Partículas Virais
9.
BMC Vet Res ; 15(1): 432, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796116

RESUMO

BACKGROUND: African horse sickness (AHS) is a severe arthropod-borne viral disease of equids, with a mortality rate of up to 95% in susceptible naïve horses. Due to safety concerns with the current live, attenuated AHS vaccine, alternate safe and effective vaccination strategies such as virus-like particles (VLPs) are being investigated. Transient plant-based expression systems are a rapid and highly scalable means of producing such African horse sickness virus (AHSV) VLPs for vaccine purposes. RESULTS: In this study, we demonstrated that transient co-expression of the four AHSV capsid proteins in agroinfiltrated Nicotiana benthamiana dXT/FT plants not only allowed for the assembly of homogenous AHSV-1 VLPs but also single, double and triple chimeric VLPs, where one capsid protein originated from one AHS serotype and at least one other capsid protein originated from another AHS serotype. Following optimisation of a large scale VLP purification procedure, the safety and immunogenicity of the plant-produced, triple chimeric AHSV-6 VLPs was confirmed in horses, the target species. CONCLUSIONS: We have successfully shown assembly of single and double chimeric AHSV-7 VLPs, as well as triple chimeric AHSV-6 VLPs, in Nicotiana benthamiana dXT/FT plants. Plant produced chimeric AHSV-6 VLPs were found to be safe for administration into 6 month old foals as well as capable of eliciting a weak neutralizing humoral immune response in these target animals against homologous AHSV virus.


Assuntos
Vírus da Doença Equina Africana/imunologia , Doença Equina Africana/prevenção & controle , Proteínas do Capsídeo/imunologia , Nicotiana/metabolismo , Vacinas Virais , Animais , Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/metabolismo , Regulação da Expressão Gênica de Plantas , Cavalos , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , Vacinas Atenuadas , Vacinas de Partículas Semelhantes a Vírus
10.
Vaccine ; 37(41): 6068-6075, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31471154

RESUMO

Bluetongue (BT) is a hemorrhagic non-contagious, biting midge-transmitted disease of wild and domestic ruminants that is caused by bluetongue virus (BTV). Annual vaccination plays a pivotal role in BT disease control in endemic regions. Due to safety concerns of the current BTV multivalent live attenuated vaccine (LAV), a safe efficacious new generation subunit vaccine such as a plant-produced BT virus-like particle (VLP) vaccine is imperative. Previously, homogenous BTV serotype 8 (BTV-8) VLPs were successfully produced in Nicotiana benthamiana plants and provided protective immunity in sheep. In this study, combinations of BTV capsid proteins from more than one serotype were expressed and assembled to form chimaeric BTV-3 and BTV-4 VLPs in N. benthamiana plants. The assembled homogenous BTV-8, as well as chimaeric BTV-3 and chimaeric BTV-4 VLP serotypes, were confirmed by SDS-PAGE, Transmission Electron microscopy (TEM) and protein confirmation using liquid chromatography-mass spectrometry (LC-MS/MS) based peptide sequencing. As VP2 is the major determinant eliciting protective immunity, the percentage coverage and number of unique VP2 peptides detected in assembled chimaeric BT VLPs were used as a guide to assemble the most appropriate chimaeric combinations. Both plant-produced chimaeric BTV-3 and BTV-4 VLPs were able to induce long-lasting serotype-specific neutralizing antibodies equivalent to the monovalent LAV controls. Antibody levels remained high to the end of the trial. Combinations of homogenous and chimaeric BT VLPs have great potential as a safe, effective multivalent vaccine with the ability to distinguish between vaccinated and infected individuals (DIVA) due to the absence of non-structural proteins.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Ovinos/imunologia , Vacinação/veterinária , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Nicotiana/virologia , Vacinas Atenuadas/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia
11.
Vet Res ; 49(1): 105, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309390

RESUMO

African horse sickness (AHS) is caused by multiple serotypes of the dsRNA AHSV and is a major scourge of domestic equids in Africa. While there are well established commercial live attenuated vaccines produced in South Africa, risks associated with these have encouraged attempts to develop new and safer recombinant vaccines. Previously, we reported on the immunogenicity of a plant-produced AHS serotype 5 virus-like particle (VLP) vaccine, which stimulated high titres of AHS serotype 5-specific neutralizing antibodies in guinea pigs. Here, we report a similar response to the vaccine in horses. This is the first report demonstrating the safety and immunogenicity of plant-produced AHS VLPs in horses.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana/prevenção & controle , Anticorpos Antivirais/imunologia , Nicotiana/metabolismo , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Cavalos , Vacinas Atenuadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA