RESUMO
Probiotic bacteria have many protective effects against inflammatory disorders, though the mechanisms underlying their actions are poorly understood. The Lab4b consortium of probiotics contains four strains of lactic acid bacteria and bifidobacteria that are reflective of the gut of newborn babies and infants. The effect of Lab4b on atherosclerosis, an inflammatory disorder of the vasculature, has not yet been determined and was investigated on key processes associated with this disease in human monocytes/macrophages and vascular smooth muscle cells in vitro. The Lab4b conditioned medium (CM) attenuated chemokine-driven monocytic migration, monocyte/macrophage proliferation, uptake of modified LDL and macropinocytosis in macrophages together with the proliferation and platelet-derived growth factor-induced migration of vascular smooth muscle cells. The Lab4b CM also induced phagocytosis in macrophages and cholesterol efflux from macrophage-derived foam cells. The effect of Lab4b CM on macrophage foam cell formation was associated with a decrease in the expression of several key genes implicated in the uptake of modified LDL and induced expression of those involved in cholesterol efflux. These studies reveal, for the first time, several anti-atherogenic actions of Lab4b and strongly implicate further studies in mouse models of the disease in vivo and in clinical trials.
Assuntos
Aterosclerose , Probióticos , Animais , Camundongos , Recém-Nascido , Humanos , Macrófagos/metabolismo , Células Espumosas/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismoRESUMO
SCOPE: Previous studies show that Lab4 probiotic consortium plus Lactobacillus plantarum CUL66 (Lab4P) reduces diet-induced weight gain and plasma cholesterol levels in C57BL/6J mice fed a high fat diet (HFD). The effect of Lab4P on atherosclerosis is not known and is therefore investigated. METHODS AND RESULTS: Atherosclerosis-associated parameters are analyzed in LDL receptor deficient mice fed HFD for 12 weeks alone or supplemented with Lab4P. Lab4P increases plasma HDL and triglyceride levels and decreases LDL/VLDL levels. Lab4P also reduces plaque burden and content of lipids and macrophages, indicative of dampened inflammation, and increases smooth muscle cell content, a marker of plaque stabilization. Atherosclerosis arrays show that Lab4P alters the liver expression of 19 key disease-associated genes. Lab4P also decreases the frequency of macrophages and T-cells in the bone marrow. In vitro assays using conditioned media from probiotic bacteria demonstrates attenuation of several atherosclerosis-associated processes in vitro such as chemokine-driven monocytic migration, proliferation of monocytes and macrophages, foam cell formation and associated changes in expression of key genes, and proliferation and migration of vascular smooth muscle cells. CONCLUSION: This study provides new insights into the anti-atherogenic actions of Lab4P together with the underlying mechanisms and supports further assessments in human trials.