Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cancer ; 130(11): 2031-2041, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294959

RESUMO

INTRODUCTION: It was hypothesized that use of proton beam therapy (PBT) in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiation and consolidative immune checkpoint inhibition is associated with fewer unplanned hospitalizations compared with intensity-modulated radiotherapy (IMRT). METHODS: Patients with locally advanced non-small cell lung cancer treated between October 2017 and December 2021 with concurrent chemoradiation with either IMRT or PBT ± consolidative immune checkpoint inhibition were retrospectively identified. Logistic regression was used to assess the association of radiation therapy technique with 90-day hospitalization and grade 3 (G3+) lymphopenia. Competing risk regression was used to compare G3+ pneumonitis, G3+ esophagitis, and G3+ cardiac events. Kaplan-Meier method was used for progression-free survival and overall survival. Inverse probability treatment weighting was applied to adjust for differences in PBT and IMRT groups. RESULTS: Of 316 patients, 117 (37%) received PBT and 199 (63%) received IMRT. The PBT group was older (p < .001) and had higher Charlson Comorbidity Index scores (p = .02). The PBT group received a lower mean heart dose (p < .0001), left anterior descending artery V15 Gy (p = .001), mean lung dose (p = .008), and effective dose to immune circulating cells (p < .001). On inverse probability treatment weighting analysis, PBT was associated with fewer unplanned hospitalizations (adjusted odds ratio, 0.55; 95% CI, 0.38-0.81; p = .002) and less G3+ lymphopenia (adjusted odds ratio, 0.55; 95% CI, 0.37-0.81; p = .003). There was no difference in other G3+ toxicities, progression-free survival, or overall survival. CONCLUSIONS: PBT is associated with fewer unplanned hospitalizations, lower effective dose to immune circulating cells and less G3+ lymphopenia compared with IMRT. Minimizing dose to lymphocytes may be warranted, but prospective data are needed.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Quimiorradioterapia , Hospitalização , Neoplasias Pulmonares , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Feminino , Masculino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Idoso , Pessoa de Meia-Idade , Hospitalização/estatística & dados numéricos , Terapia com Prótons/métodos , Terapia com Prótons/efeitos adversos , Quimiorradioterapia/métodos , Quimiorradioterapia/efeitos adversos , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfopenia/etiologia , Anticorpos Monoclonais
2.
Int J Radiat Oncol Biol Phys ; 118(5): 1445-1454, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619788

RESUMO

PURPOSE: We hypothesized that after adoption of immune checkpoint inhibitor (ICI) consolidation for patients with locally advanced non-small cell lung cancer (LA-NSCLC) receiving concurrent chemoradiation therapy (cCRT), rates of symptomatic pneumonitis would increase, thereby supporting efforts to reduce lung radiation dose. METHODS AND MATERIALS: This single institution, multisite retrospective study included 783 patients with LA-NSCLC treated with definitive cCRT either before introduction of ICI consolidation (pre-ICI era cohort [January 2011-September 2017]; N = 448) or afterward (ICI era cohort [October 2017-December 2021]; N = 335). Primary endpoint was grade ≥2 pneumonitis (G2P) and secondary endpoint was grade ≥3 pneumonitis (G3P), per Common Terminology Criteria for Adverse Events v5.0. Pneumonitis was compared between pre-ICI era and ICI era cohorts using the cumulative incidence function and Gray's test. Inverse probability of treatment weighting (IPTW)-adjusted Fine-Gray models were generated. Logistic models were developed to predict the 1-year probability of G2P as a function of lung dosimetry. RESULTS: G2P was higher in the ICI era than in the pre-ICI era (1-year cumulative incidence 31.4% vs 20.1%; P < .001; IPTW-adjusted multivariable subdistribution hazard ratio, 2.03; 95% confidence interval, 1.53-2.70; P < .001). There was no significant interaction between ICI era treatment and either lung volume receiving ≥20 Gy (V20) or mean lung dose in Fine-Gray regression for G2P; however, the predicted probability of G2P was higher in the ICI era at clinically relevant values of lung V20 (≥24%) and mean lung dose (≥14 Gy). Cut-point analysis revealed a lung V20 threshold of 28% in the ICI era (1-year G2P rate 46.0% above vs 19.8% below; P < .001). Among patients receiving ICI consolidation, lung V5 was not associated with G2P. G3P was not higher in the ICI era (1-year cumulative incidence 7.5% vs 6.0%; P = .39; IPTW-adjusted multivariable subdistribution hazard ratio, 1.12; 95% confidence interval, 0.63-2.01; P = .70). CONCLUSIONS: In patients with LA-NSCLC treated with cCRT, the adoption of ICI consolidation was associated with an increase in G2P but not G3P. With ICI consolidation, stricter lung dose constraints may be warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pneumonia , Pneumonite por Radiação , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Estudos Retrospectivos , Pneumonite por Radiação/etiologia , Pneumonite por Radiação/epidemiologia , Imunoterapia/efeitos adversos
3.
Int J Radiat Oncol Biol Phys ; 119(1): 56-65, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652303

RESUMO

PURPOSE: Reirradiation (reRT) with proton beam therapy (PBT) may offer a chance of cure while minimizing toxicity for patients with isolated intrathoracic recurrences of non-small cell lung cancer (NSCLC). However, distant failure remains common, necessitating strategies to integrate more effective systemic therapy. METHODS AND MATERIALS: This was a phase 2, single-arm trial (NCT03087760) of consolidation pembrolizumab after PBT reRT for locoregional recurrences of NSCLC. Four to 12 weeks after completion of 60 to 70 Gy PBT reRT, patients without progressive disease received pembrolizumab for up to 12 months. Primary endpoint was progression-free survival (PFS), measured from the start of reRT. Secondary endpoints were overall survival (OS) and National Cancer Institute Common Terminology Criteria for Adverse Events, version 5.0 toxicity. RESULTS: Between 2017 and 2021, 22 patients received PBT reRT. Median interval from prior radiation end to reRT start was 20 months. Most recurrences (91%) were centrally located. Most patients received concurrent chemotherapy (95%) and pencil beam scanning PBT (77%), and 36% had received prior durvalumab. Fifteen patients (68%) initiated consolidation pembrolizumab on trial and received a median of 3 cycles (range, 2-17). Pembrolizumab was discontinued most commonly due to toxicity (n = 5; 2 were pembrolizumab-related), disease progression (n = 4), and completion of 1 year (n = 3). Median follow-up was 38.7 months. Median PFS and OS were 8.8 months (95% CI, 4.2-23.7) and 22.8 months (95% CI, 6.9-not reached), respectively. There was only one isolated in-field failure after reRT. Grade ≥3 toxicities occurred in 10 patients (45%); 2 were pembrolizumab-related. There were 2 grade 5 toxicities, an aorto-esophageal fistula at 6.9 months and hemoptysis at 46.8 months, both probably from reRT. The trial closed early due to widespread adoption of immunotherapy off-protocol. CONCLUSIONS: In the first-ever prospective trial combining PBT reRT with consolidation immunotherapy, PFS was acceptable and OS favorable. Late grade 5 toxicity occurred in 2 of 22 patients. This approach may be considered in selected patients with isolated thoracic recurrences of NSCLC.


Assuntos
Anticorpos Monoclonais Humanizados , Carcinoma Pulmonar de Células não Pequenas , Pneumopatias , Neoplasias Pulmonares , Reirradiação , Humanos , Prótons , Reirradiação/efeitos adversos , Estudos Prospectivos , Recidiva Local de Neoplasia , Pneumopatias/etiologia
4.
Clin Transl Radiat Oncol ; 39: 100581, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36691564

RESUMO

Background and purpose: Prior studies have examined associations of cardiovascular substructure dose with overall survival (OS) or cardiac events after chemoradiotherapy (CRT) for non-small cell lung cancer (NSCLC). Herein, we investigate an alternative endpoint, death without cancer progression (DWP), which is potentially more specific than OS and more sensitive than cardiac events for understanding CRT toxicity. Materials and methods: We retrospectively reviewed records of 187 patients with locally advanced or oligometastatic NSCLC treated with definitive CRT from 2008 to 2016 at a single institution. Dosimetric parameters to the heart, lung, and ten cardiovascular substructures were extracted. Charlson Comorbidity Index (CCI), excluding NSCLC diagnosis, was used to stratify patients into CCI low (0-2; n = 66), CCI intermediate (3-4; n = 78), and CCI high (≥5; n = 43) groups. Primary endpoint was DWP, modeled with competing risk regression. Secondary endpoints included OS. An external cohort consisted of 140 patients from another institution. Results: Median follow-up was 7.3 years for survivors. Death occurred in 143 patients (76.5 %), including death after progression in 118 (63.1 %) and DWP in 25 (13.4 %). On multivariable analysis, increasing CCI stratum and mean heart dose were associated with DWP. For mean heart dose ≥ 10 Gy vs < 10 Gy, DWP was higher (5-year rate, 16.9 % vs 6.7 %, p = 0.04) and OS worse (median, 22.9 vs 34.1 months, p < 0.001). Ventricle (left, right, and bilateral) and pericardial but not atrial substructure dose were associated with DWP, whereas all three were inversely associated with OS. Cutpoint analysis identified right ventricle mean dose ≥ 5.5 Gy as a predictor of DWP. In the external cohort, we confirmed an association of ventricle, but not atrial, dose with DWP. Conclusion: Cardiovascular substructure dose showed distinct associations with DWP. Future cardiotoxicity studies in NSCLC could consider DWP as an endpoint.

5.
Phys Med Biol ; 67(3)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35026741

RESUMO

Objective. We conducted a Monte Carlo study to comprehensively investigate the fetal dose resulting from proton pencil beam scanning (PBS) craniospinal irradiation (CSI) during pregnancy.Approach. The gestational-age dependent pregnant phantom series developed at the University of Florida (UF) were converted into DICOM-RT format (CT images and structures) and imported into a treatment planning system (TPS) (Eclipse v15.6) commissioned to a IBA PBS nozzle. A proton PBS CSI plan (prescribed dose: 36 Gy) was created on the phantoms. The TOPAS MC code was used to simulate the proton PBS CSI on the phantoms, for which MC beam properties at the nozzle exit (spot size, spot divergence, mean energy, and energy spread) were matched to IBA PBS nozzle beam measurement data. We calculated mean absorbed doses for 28 organs and tissues and whole body of the fetus at eight gestational ages (8, 10, 15, 20, 25, 30, 35, and 38 weeks). For contextual purposes, the fetal organ/tissue doses from the treatment planning CT scan of the mother's head and torso were estimated using the National Cancer Institute dosimetry system for CT (NCICT, Version 3) considering a low-dose CT protocol (CTDIvol: 8.97 mGy).Main results. The majority of the fetal organ/tissue doses from the proton PBS CSI treatment fell within a range of 3-6 mGy. The fetal organ/tissue doses for the 38 week phantom showed the largest variation with the doses ranging from 2.9 mGy (adrenals) to 8.2 mGy (eye lenses) while the smallest variation ranging from 3.2 mGy (oesophagus) to 4.4 mGy (brain) was observed for the doses for the 20 week phantom. The fetal whole-body dose ranged from 3.7 mGy (25 weeks) to 5.8 mGy (8 weeks). Most of the fetal doses from the planning CT scan fell within a range of 7-13 mGy, approximately 2-to-9 times lower than the fetal dose equivalents of the proton PBS CSI treatment (assuming a quality factor of 7).Significance. The fetal organ/tissue doses observed in the present work will be useful for one of the first clinically informative predictions on the magnitude of fetal dose during proton PBS CSI during pregnancy.


Assuntos
Radiação Cranioespinal , Terapia com Prótons , Feminino , Feto/diagnóstico por imagem , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Gravidez , Terapia com Prótons/métodos , Prótons , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
6.
Radiat Oncol ; 15(1): 258, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33160370

RESUMO

BACKGROUND: This study investigates daily breast geometry and delivered dose to prone-positioned patients undergoing tangential whole breast radiation therapy (WBRT) on an O-ring linear accelerator with 6X flattening filter free mode (6X-FFF), planned with electronic compensation (ECOMP) method. Most practices rely on skin marks or daily planar image matching for prone breast WBRT. This system provides low dose daily CBCT, which was used to study daily robustness of delivered dose parameters for prone-positioned WBRT. METHODS: Eight patients treated with 16-fraction prone-breast WBRT were retrospectively studied. Planning CTs were deformed to daily CBCT to generate daily synthetic CTs, on which delivered dose distributions were calculated. A total of 8 × 16 = 128 synthetic CTs were generated. Consensus ASTRO definition was used to contour Breast PTV Eval for each daily deformed CT. Breast PTV Eval coverage (V90%) and hotspot (V105% and Dmax) were monitored daily to compare prescription dose with daily delivered dose. Various predictors including patient weight, breast width diameter (BWD), and Dice similarity coefficient (DSC) were fit into an analysis of covariance model predicting V90% and V105% deviation from prescribed (ΔV90%, ΔV105%). Statistical significance is indicated with asterisks (* for p < 0.05; ** for p < 0.001). RESULTS: Daily delivered Breast PTV Eval V90% was moderately smaller than prescribed (median ΔV90% = - 0.1%*), while V105% was much larger (median ΔV105% = + 10.1%** or + 92.4 cc**). Patient's weight loss correlated with significantly increased ΔV105% (+ 4.6%/ - 1% weight, R2 = 0.4**) and moderately decreased ΔV90% (- 0.071%/ - 1% wt., R2 = 0.2**). Comprehensive ANCOVA models indicated three factors affect ΔV90% and ΔV105% the most: (1) BWD decrease (- 0.09%* and + 10%**/ - 1 cm respectively), (2) PTV Eval volume decrease (- 0.4%** and + 9%**/ - 100 cc), and for ΔV105% only, (3) the extent of breast deformation (+ 10%**/ - 0.01 DSC). Breast PTV Eval volume also decreased with time (- 2.21*cc/fx), possibly indicating seroma resolution and increase in V105% over time. CONCLUSIONS: Daily CBCT revealed key delivered dose parameters vary significantly for patients undergoing tangential prone breast WBRT planned with ECOMP using 6X-FFF. Patient weight, BWD, and breast shape deformation could be used to predict dosimetric variations from prescribed. Preliminary findings suggest an adaptive plan based on daily CBCT could reduce excessive dose to the breast.


Assuntos
Neoplasias da Mama/radioterapia , Mama/efeitos da radiação , Tomografia Computadorizada de Feixe Cônico/métodos , Aceleradores de Partículas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Projetos Piloto , Decúbito Ventral , Dosagem Radioterapêutica
7.
Adv Radiat Oncol ; 5(5): 943-950, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083657

RESUMO

PURPOSE: The dosimetric parameters used clinically to reduce the likelihood of radiation pneumonitis (RP) for lung cancer radiation therapy have traditionally been V20Gy ≤ 30% to 35% and mean lung dose ≤ 20 to 23 Gy; however, these parameters are derived based on studies from photon therapy. The purpose of this study is to evaluate whether such dosimetric predictors for RP are applicable for locally advanced non-small cell lung cancer (LA-NSCLC) patients treated with proton therapy. METHODS AND MATERIALS: In the study, 160 (78 photon, 82 proton) patients with LA-NSCLC treated with chemoradiotherapy between 2011 and 2016 were retrospectively identified. Forty (20 photon, 20 proton) patients exhibited grade ≥2 RP after therapy. Dose volume histograms for the uninvolved lung were extracted for each patient. The percent lung volumes receiving above various dose levels were obtained in addition to V20Gy and Dmean. These dosimetric parameters and patient characteristics were evaluated with univariate and multivariate logistic regression tests. Receiver operating characteristic curves were generated to obtain the optimal dosimetric constraints through analyzing RP and non-RP sensitivity and specificity values. RESULTS: The multivariate analysis showed V40Gy and Dmean to be statistically significant for proton and photon patients, respectively. V35Gy to V50Gy were strongly correlated to V40Gy for proton patients. Based on the receiver operating characteristic curves, V35Gy to V50Gy had the highest area under the curve compared with other dose levels for proton patients. A potential dosimetric constraint for RP predictor in proton patients is V40Gy ≤ 23%. CONCLUSIONS: In addition to V20Gy and Dmean, the lung volume receiving higher doses, such as V40Gy, may be used as an additional indicator for RP in LA-NSCLC patients treated with proton therapy.

8.
Int J Part Ther ; 6(4): 1-10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582814

RESUMO

PURPOSE: There has been a recent epidemic of human papillomavirus (HPV)-positive oropharyngeal cancer, accounting for 70% to 80% of diagnosed cases. These patients have an overall favorable prognosis and are typically treated with a combination of surgery, chemotherapy, and radiation. Because these patients live longer, they are at risk of secondary malignant neoplasms (SMNs) associated with radiation therapy. Therefore, we assessed the predicted risk of SMNs after adjuvant radiation therapy with intensity-modulated proton therapy (IMPT) compared with intensity modulated photon radiation therapy (IMRT) in patients with HPV- positive oropharyngeal cancers after complete resection. MATERIALS AND METHODS: Thirteen consecutive patients with HPV-positive oropharyngeal cancers treated with postoperative radiation alone were selected. All patients were treated with pencil beam scanning IMPT to a total dose of 60 Gy in 2 Gy fractions. The IMRT plans were generated for clinical backup and were used for comparative purposes. The SMN risk was calculated based on an organ equivalent dose model for the linear-exponential dose-response curve. RESULTS: Median age of the patient cohort was 63 years (range, 47-73 years). There was no difference in target coverage between IMPT and IMRT plans. We noted significant reductions in mean mandible, contralateral parotid, lung and skin organ equivalent doses with IMPT compared with IMRT plans (P < .001). Additionally, a significant decrease in the risk of SMNs with IMPT was observed for all the evaluated organs. Per our analysis, for patients with oropharyngeal cancers diagnosed at a national median age of 54 years with an average life expectancy of 27 years (per national Social Security data), 4 excess SMNs per 100 patients could be avoided by treating them with IMPT versus IMRT. CONCLUSIONS: Treatment with IMPT can achieve comparable target dose coverage while significantly reducing the dose to healthy organs, which can lead to fewer predicted SMNs compared with IMRT.

9.
Med Dosim ; 45(4): 334-338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32471604

RESUMO

Whole-pelvis pencil beam scanning (PBS) proton therapy is utilized in both the intact and post-operative settings in patients with prostate cancer. As whole pelvis prostate radiotherapy has traditionally been delivered with standard photon beams, limited evidence and technical descriptions have been reported regarding the use of proton therapy. Here we present two robust three-field treatment planning approaches utilized to maximize target coverage in the presence of anatomic and delivery uncertainties. Both techniques, conventional optimization (CO) and robust optimization (RO), create treatment plans with acceptable target coverage and sparing of organs at risk (OAR). While the RO method is less time intensive and may theoretically allow for superior OAR sparing and improved robustness, the CO method can be implemented by institutions who do not have RO capabilities.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Masculino , Pelve , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Int J Radiat Oncol Biol Phys ; 107(1): 79-87, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31987966

RESUMO

PURPOSE: We hypothesized that the radiation dose in high-ventilation portions of the lung better predicts radiation pneumonitis (RP) outcome for patients treated with proton radiation therapy (PR) and photon radiation therapy (PH). METHODS AND MATERIALS: Seventy-four patients (38 protons, 36 photons) with locally advanced non-small cell lung cancer treated with concurrent chemoradiation therapy were identified, of whom 24 exhibited RP (graded using Common Terminology Criteria for Adverse Events v4.0) after PR or PH, and 50 were negative controls. The inhale and exhale simulation computed tomography scans were deformed using Advanced Normalization Tools. The 3-dimensional lung ventilation maps were derived from the deformation matrix and partitioned into low- and high-ventilation zones for dosimetric analysis. Receiver operating curve analysis was used to study the power of relationship between RP and ventilation zones to determine an optimal ventilation cutoff. Univariate logistic regression was used to correlate dose in high- and low-ventilation zones with risk of RP. A nonparametric random forest process was used for multivariate importance assessment. RESULTS: The optimal high-ventilation zone definition was determined to be the higher 45% to 60% of the ventilation values. The parameter vV20Gy_high (high ventilation volume receiving ≥20 Gy) was found to be a significant indicator for RP (PH: P = .002, PR: P = .035) with improved areas under the curve compared with the traditional V20Gy for both photon and proton cohorts. The relationship of RP with dose to the low-ventilation zone of the lung was insignificant (PH: P = .123, PR: P = .661). Similar trends were observed for ventilation mean lung dose and ventilation V5Gy. Multivariate importance assessment determined that vV20Gy_high, vV5_high, and mean lung dose were the most significant parameters for the proton cohort with a combined area under the curve of 0.78. CONCLUSION: Dose to the high-ventilated regions of the lung can improve predictions of RP for both PH and PR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/efeitos adversos , Ventilação Pulmonar/efeitos da radiação , Pneumonite por Radiação/etiologia , Idoso , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Feminino , Humanos , Masculino , Radiometria
11.
Br J Radiol ; 93(1107): 20190638, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31845816

RESUMO

OBJECTIVE: To evaluate dosimetric consequences of inter-fraction setup variation and anatomical changes in patients receiving multifield optimised (MFO) intensity modulated proton therapy for post-operative oropharyngeal (OPC) and oral cavity (OCC) cancers. METHODS: Six patients receiving MFO for post-operative OPC and OCC were evaluated. Plans were robustly optimised to clinical target volumes (CTVs) using 3 mm setup and 3.5% range uncertainty. Weekly online cone beam CT (CBCT) were performed. Planning CT was deformed to the CBCT to create virtual CTs (vCTs) on which the planned dose was recalculated. vCT plan robustness was evaluated using a setup uncertainty of 1.5 mm and range uncertainty of 3.5%. Target coverage, D95%, and hotspots, D0.03cc, were evaluated for each uncertainty along with the vCT-calculated nominal plan. Mean dose to organs at risk (OARs) for the vCT-calculated nominal plan and relative % change in weight from baseline were evaluated. RESULTS: Robustly optimised plans in post-operative OPC and OCC patients are robust against inter-fraction setup variations and range uncertainty. D0.03cc in the vCT-calculated nominal plans were clinically acceptable across all plans. Across all patients D95% in the vCT-calculated nominal treatment plan was at least 100% of the prescribed dose. No patients lost ≥10% weight from baseline. Mean dose to the OARs and max dose to the spinal cord remained within tolerance. CONCLUSION: MFO plans in post-operative OPC and OCC patients are robust to inter-fraction uncertainties in setup and range when evaluated over multiple CT scans without compromising OAR mean dose. ADVANCES IN KNOWLEDGE: This is the first paper to evaluate inter-fraction MFO plan robustness in post-operative head and neck treatment.


Assuntos
Carcinoma de Células Escamosas/radioterapia , Neoplasias Bucais/radioterapia , Neoplasias Orofaríngeas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada/métodos , Idoso , Carcinoma de Células Escamosas/diagnóstico por imagem , Fracionamento da Dose de Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Neoplasias Orofaríngeas/diagnóstico por imagem , Projetos Piloto , Cuidados Pós-Operatórios , Estudos Retrospectivos , Medula Espinal/efeitos da radiação , Incerteza
12.
Phys Med Biol ; 64(12): 125024, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31044743

RESUMO

The purpose of this study is to evaluate the effect of an intravenous (IV) contrast agent on proton therapy dose calculation using dual-energy computed tomography (DECT). Two DECT methods are considered. The first one, [Formula: see text], attempts to accurately predict the proton stopping powers relative to water (SPR) of contrast enhanced (CE) DECT images, while the second generates a virtual non-contrast (VNC) volume that can be processed as a native non-contrast (NC) one. Both methods are compared against single-energy computed tomography (SECT). The accuracy of SPR predicted for different concentrations of IV contrast diluted in water is first evaluated using simulated data. Results then are validated in an experimental set-up comparing SPR predictions for both NC and CE images to measurements made with a multi-layer ionisation chamber (MLIC). Finally, the impact of IV contrast on dose calculation using both SECT and DECT is evaluated for one liver and one head and neck patient. Using simulated data, DECT is shown to be less sensitive to the presence of IV contrast than SECT, although the performance of the [Formula: see text] method is sensitive to the level of beam hardening considered. For different concentrations of IV contrast diluted in water, experimental MLIC measurement of SPR agrees with DECT predictions within 3% while SECT introduce errors above 20%. This error in the SPR value results in a range error of up to 3.2 mm (2.6%) for proton beams calculated on SECT CE patient images. The error is reduced below 1 mm using DECT with the [Formula: see text] and VNC methods. Globally, it is observed that the influence of IV contrast on proton therapy dose calculation is mitigated using DECT over SECT. In patient anatomies, the VNC approach provides the best agreement with the reference dose distribution.


Assuntos
Algoritmos , Meios de Contraste , Imagens de Fantasmas , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação
13.
Phys Med Biol ; 63(16): 165012, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30022768

RESUMO

Because of the concerns associated with radiation exposure at a young age, there is an increased interest in pediatric absorbed dose estimates for imaging agents. Almost all reported pediatric absorbed dose estimates, however, have been determined using adult pharmacokinetic data with radionuclide S values that take into account the anatomical differences between adults and children based upon the older Cristy-Eckerman (C-E) stylized phantoms. In this work, we use pediatric model-derived pharmacokinetics to compare absorbed dose and effective dose estimates for 18F-FDG in pediatric patients using S values generated from two different geometries of computational phantoms. Time-integrated activity coefficients of 18F-FDG in brain, lungs, heart wall, kidneys and liver, retrospectively, calculated from 35 pediatric patients at the Boston's Children Hospital were used. The absorbed dose calculation was performed in accordance with the Medical Internal Radiation Dose method using S values generated from the University of Florida/National Cancer Institute (UF/NCI) hybrid phantoms, as well as those from C-E stylized computational phantoms. The effective dose was computed using tissue-weighting factors from ICRP Publication 60 and ICRP Publication 103 for the C-E and UF/NCI, respectively. Substantial differences in the absorbed dose estimates between UF/NCI hybrid pediatric phantoms and the C-E stylized phantoms were found for the lungs, ovaries, red bone marrow and urinary bladder wall. Large discrepancies in the calculated dose values were observed in the bone marrow; ranging between -26% to +199%. The effective doses computed by the UF/NCI hybrid phantom S values were slightly different than those seen using the C-E stylized phantoms with percent differences of -0.7%, 2.9% and 2.5% for a newborn, 1 year old and 5 year old, respectively. Differences in anatomical modeling features among computational phantoms used to perform Monte Carlo-based photon and electron transport simulations for 18F, and very likely for other radionuclides, impact internal organ dosimetry computations for pediatric nuclear medicine studies.


Assuntos
Fluordesoxiglucose F18/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radiometria/instrumentação , Radiometria/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Método de Monte Carlo , Fótons , Doses de Radiação , Exposição à Radiação , Estudos Retrospectivos
14.
JMIR Med Inform ; 6(1): e8, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391345

RESUMO

BACKGROUND: In outcome studies of oncology patients undergoing radiation, researchers extract valuable information from medical records generated before, during, and after radiotherapy visits, such as survival data, toxicities, and complications. Clinical studies rely heavily on these data to correlate the treatment regimen with the prognosis to develop evidence-based radiation therapy paradigms. These data are available mainly in forms of narrative texts or table formats with heterogeneous vocabularies. Manual extraction of the related information from these data can be time consuming and labor intensive, which is not ideal for large studies. OBJECTIVE: The objective of this study was to adapt the interactive information extraction platform Information and Data Extraction using Adaptive Learning (IDEAL-X) to extract treatment and prognosis data for patients with locally advanced or inoperable non-small cell lung cancer (NSCLC). METHODS: We transformed patient treatment and prognosis documents into normalized structured forms using the IDEAL-X system for easy data navigation. The adaptive learning and user-customized controlled toxicity vocabularies were applied to extract categorized treatment and prognosis data, so as to generate structured output. RESULTS: In total, we extracted data from 261 treatment and prognosis documents relating to 50 patients, with overall precision and recall more than 93% and 83%, respectively. For toxicity information extractions, which are important to study patient posttreatment side effects and quality of life, the precision and recall achieved 95.7% and 94.5% respectively. CONCLUSIONS: The IDEAL-X system is capable of extracting study data regarding NSCLC chemoradiation patients with significant accuracy and effectiveness, and therefore can be used in large-scale radiotherapy clinical data studies.

15.
Semin Nucl Med ; 47(2): 118-125, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28237000

RESUMO

The practice of nuclear medicine in children is well established for imaging practically all physiologic systems but particularly in the fields of oncology, neurology, urology, and orthopedics. Pediatric nuclear medicine yields images of physiologic and molecular processes that can provide essential diagnostic information to the clinician. However, nuclear medicine involves the administration of radiopharmaceuticals that expose the patient to ionizing radiation and children are thought to be at a higher risk for adverse effects from radiation exposure than adults. Therefore it may be considered prudent to take extra care to optimize the radiation dose associated with pediatric nuclear medicine. This requires a solid understanding of the dosimetry associated with the administration of radiopharmaceuticals in children. Models for estimating the internal radiation dose from radiopharmaceuticals have been developed by the Medical Internal Radiation Dosimetry Committee of the Society of Nuclear Medicine and Molecular Imaging and other groups. But to use these models accurately in children, better pharmacokinetic data for the radiopharmaceuticals and anatomical models specifically for children need to be developed. The use of CT in the context of hybrid imaging has also increased significantly in the past 15 years, and thus CT dosimetry as it applies to children needs to be better understood. The concept of effective dose has been used to compare different practices involving radiation on a dosimetric level, but this approach may not be appropriate when applied to a population of children of different ages as the radiosensitivity weights utilized in the calculation of effective dose are not specific to children and may vary as a function of age on an organ-by-organ bias. As these gaps in knowledge of dosimetry and radiation risk as they apply to children are filled, more accurate models can be developed that allow for better approaches to dose optimization. In turn, this will lead to an overall improvement in the practice of pediatric nuclear medicine by providing excellent diagnostic image quality at the lowest radiation dose possible.


Assuntos
Medicina Nuclear/métodos , Doses de Radiação , Radiometria/métodos , Criança , Humanos , Modelos Biológicos , Distribuição Tecidual , Tomografia Computadorizada por Raios X
16.
Med Phys ; 44(2): 747-761, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28133749

RESUMO

PURPOSE: The hematopoietically active (or red) bone marrow is the target tissue assigned in skeletal dosimetry models for assessment of stochastic effects (leukemia induction) as well as tissue reactions (marrow toxicity). Active marrow, however, is in reality a surrogate tissue region for specific cell populations, namely the hematopoietic stem and progenitor cells. Present models of active marrow dosimetry implicitly assume that these cells are uniformly localized throughout the marrow spaces of trabecular spongiosa. Data from Watchman et al. and Bourke et al., however, clearly indicate that there is a substantial spatial concentration gradient of these cells with the highest concentrations localized near the bone trabeculae surfaces. The purpose of the present study was thus to explore the dosimetric implications of these spatial gradients on active marrow dosimetry. METHODS: Images of several bone sites from a 45-yr female were retagged to group active marrow voxels into 50 µm increments of marrow depth, after which electron and alpha-particle depth-dependent specific absorbed fractions were computed for four source tissues - active marrow, inactive marrow, bone trabeculae volumes, and bone trabeculae surfaces. Corresponding depth-dependent S values (dose to a target tissue per decay in a source tissue) were computed and further weighted by the relative target cell concentration. These depth-weighted radionuclide S values were systematically compared to the more traditional volume-averaged radionuclide S values of the MIRD schema for both individual bones of the skeleton and their skeletal-averaged quantities. RESULTS: For both beta-emitters and alpha-emitters localized in the active and inactive marrow, depth-weighted S values were shown to differ from volume-averaged S values by only a few percent, as dose gradients across the marrow tissues are nonexistent. For bone volume and bone surface sources of alpha-emitters and lower energy beta-emitters, when marrow dose gradients are expected, explicit consideration of target cell spatial concentration gradients are shown to significantly impact marrow dosimetry. CONCLUSIONS: For medical isotopes currently utilized for treatment of skeletal metastases, namely 153 Sm and 223 Ra, accounting for hematopoietic stem and progenitor cell concentration gradients resulted in maximum percent differences to reference skeletal-averaged S values of ~21% and 55%, respectively.


Assuntos
Medula Óssea/efeitos da radiação , Osso e Ossos , Células-Tronco Hematopoéticas/efeitos da radiação , Radiometria/métodos , Absorção de Radiação , Adulto , Feminino , Células-Tronco Hematopoéticas/citologia , Humanos
17.
Phys Med Biol ; 61(24): 8794-8824, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-27897136

RESUMO

An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated skeletal averaged absorbed fractions for each source-target combination were found to follow similar trends of more recent dosimetry models (image-based models) but did not follow results from skeletal models based upon assumptions of an infinite expanse of trabecular spongiosa.


Assuntos
Osso e Ossos/diagnóstico por imagem , Elétrons , Radiometria/normas , Adulto , Tecido Conjuntivo/diagnóstico por imagem , Feminino , Humanos , Imagens de Fantasmas , Doses de Radiação , Padrões de Referência , Microtomografia por Raio-X
18.
Phys Med Biol ; 61(6): 2319-32, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26930549

RESUMO

Published guidelines for administered activity to pediatric patients undergoing diagnostic nuclear medicine imaging are currently obtained through expert consensus of the minimum values as a function of body weight as required to yield diagnostic quality images. We have previously shown that consideration of body habitus is also important in obtaining diagnostic quality images at the lowest administered activity. The objective of this study was to create a series of computational phantoms that realistically portray the anatomy of the pediatric patient population which can be used to develop and validate techniques to minimize radiation dose while maintaining adequate image quality. To achieve this objective, we have defined an imaging risk index that may be used in future studies to develop pediatric patient dosing guidelines. A population of 48 hybrid phantoms consisting of non-uniform B-spline surfaces and polygon meshes was generated. The representative ages included the newborn, 1 year, 5 year, 10 year and 15 year male and female. For each age, the phantoms were modeled at their 10th, 50th, and 90th height percentile each at a constant 50th weight percentile. To test the impact of kidney size, the newborn phantoms were modeled with the following three kidney volumes: -15%, average, and +15%. To illustrate the impact of different morphologies on dose optimization, we calculated the effective dose for each phantom using weight-based (99m)Tc-DMSA activity administration. For a given patient weight, body habitus had a considerable effect on effective dose. Substantial variations were observed in the risk index between the 10th and 90th percentile height phantoms from the 50th percentile phantoms for a given age, with the greatest difference being 18%. There was a dependence found between kidney size and risk of radiation induced kidney cancer, with the highest risk indices observed in newborns with the smallest kidneys. Overall, the phantoms and techniques in this study can be used to provide data to refine dosing guidelines for pediatric nuclear imaging studies while taking into account the effects on both radiation dose and image quality.


Assuntos
Neoplasias Induzidas por Radiação/epidemiologia , Compostos Radiofarmacêuticos/efeitos adversos , Ácido Dimercaptossuccínico Tecnécio Tc 99m/efeitos adversos , Peso Corporal , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Neoplasias Induzidas por Radiação/etiologia , Tomografia por Emissão de Pósitrons/efeitos adversos , Risco
19.
Phys Med Biol ; 59(18): 5225-42, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144322

RESUMO

Substantial increases in pediatric and adult obesity in the US have prompted a major revision to the current UF/NCI (University of Florida/National Cancer Institute) family of hybrid computational phantoms to more accurately reflect current trends in larger body morphometry. A decision was made to construct the new library in a gridded fashion by height/weight without further reference to age-dependent weight/height percentiles as these become quickly outdated. At each height/weight combination, circumferential parameters were defined and used for phantom construction. All morphometric data for the new library were taken from the CDC NHANES survey data over the time period 1999-2006, the most recent reported survey period. A subset of the phantom library was then used in a CT organ dose sensitivity study to examine the degree to which body morphometry influences the magnitude of organ doses for patients that are underweight to morbidly obese in body size. Using primary and secondary morphometric parameters, grids containing 100 adult male height/weight bins, 93 adult female height/weight bins, 85 pediatric male height/weight bins and 73 pediatric female height/weight bins were constructed. These grids served as the blueprints for construction of a comprehensive library of patient-dependent phantoms containing 351 computational phantoms. At a given phantom standing height, normalized CT organ doses were shown to linearly decrease with increasing phantom BMI for pediatric males, while curvilinear decreases in organ dose were shown with increasing phantom BMI for adult females. These results suggest that one very useful application of the phantom library would be the construction of a pre-computed dose library for CT imaging as needed for patient dose-tracking.


Assuntos
Antropometria , Simulação por Computador , Obesidade Mórbida/fisiopatologia , Imagens de Fantasmas , Radiometria/métodos , Tomografia Computadorizada por Raios X/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Padrões de Referência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA