Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 458, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709327

RESUMO

Eukaryotic arginylation is an essential post-translational modification that modulates protein stability and regulates protein half-life. Arginylation is catalyzed by a family of enzymes known as the arginyl-tRNA transferases (ATE1s), which are conserved across the eukaryotic domain. Despite their conservation and importance, little is known regarding the structure, mechanism, and regulation of ATE1s. In this work, we show that ATE1s bind a previously undiscovered [Fe-S] cluster that is conserved across evolution. We characterize the nature of this [Fe-S] cluster and find that the presence of the [Fe-S] cluster in ATE1 is linked to its arginylation activity, both in vitro and in vivo, and the initiation of the yeast stress response. Importantly, the ATE1 [Fe-S] cluster is oxygen-sensitive, which could be a molecular mechanism of the N-degron pathway to sense oxidative stress. Taken together, our data provide the framework of a cluster-based paradigm of ATE1 regulatory control.


Assuntos
Aminoaciltransferases , Proteínas Ferro-Enxofre , Aminoaciltransferases/genética , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ferro-Enxofre/genética
2.
Dev Cell ; 57(5): 654-669.e9, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35247316

RESUMO

The response to oxygen availability is a fundamental process concerning metabolism and survival/death in all mitochondria-containing eukaryotes. However, the known oxygen-sensing mechanism in mammalian cells depends on pVHL, which is only found among metazoans but not in other species. Here, we present an alternative oxygen-sensing pathway regulated by ATE1, an enzyme ubiquitously conserved in eukaryotes that influences protein degradation by posttranslational arginylation. We report that ATE1 centrally controls the hypoxic response and glycolysis in mammalian cells by preferentially arginylating HIF1α that is hydroxylated by PHD in the presence of oxygen. Furthermore, the degradation of arginylated HIF1α is independent of pVHL E3 ubiquitin ligase but dependent on the UBR family proteins. Bioinformatic analysis of human tumor data reveals that the ATE1/UBR and pVHL pathways jointly regulate oxygen sensing in a transcription-independent manner with different tissue specificities. Phylogenetic analysis suggests that eukaryotic ATE1 likely evolved during mitochondrial domestication, much earlier than pVHL.


Assuntos
Aminoaciltransferases , Oxigênio , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Humanos , Mamíferos/metabolismo , Filogenia , Proteólise
3.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260394

RESUMO

The evolutionary expansion of G protein-coupled receptors (GPCRs) has produced a rich diversity of transmembrane sensors for many physical and chemical signals. In humans alone, over 800 GPCRs detect stimuli such as light, hormones, and metabolites to guide cellular decision-making primarily using intracellular G protein signaling networks. This diversity is further enriched by GPCRs that function as molecular sensors capable of discerning multiple inputs to transduce cues encoded in complex, context-dependent signals. Here, we show that many GPCRs are coincidence detectors that couple proton (H+) binding to GPCR signaling. Using a panel of 28 receptors covering 280 individual GPCR-Gα coupling combinations, we show that H+ gating both positively and negatively modulates GPCR signaling. Notably, these observations extend to all modes of GPCR pharmacology including ligand efficacy, potency, and cooperativity. Additionally, we show that GPCR antagonism and constitutive activity are regulated by H+ gating and report the discovery of an acid sensor, the adenosine A2a receptor, which can be activated solely by acidic pH. Together, these findings establish a paradigm for GPCR signaling, biology, and pharmacology applicable to acidified microenvironments such as endosomes, synapses, tumors, and ischemic vasculature.


Assuntos
Prótons , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Receptores Acoplados a Proteínas G/agonistas , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA