Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0219632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706829

RESUMO

INTRODUCTION: Surgical resection and systemic chemotherapy with temozolomide remain the mainstay for treatment of glioblastoma. However, many patients are not candidates for surgical resection given inaccessible tumor location or poor health status. Furthermore, despite being first line treatment, temozolomide has only limited efficacy. METHODS: The development of injectable hydrogel-based carrier systems allows for the delivery of a wide range of chemotherapeutics that can achieve high local concentrations, thus potentially avoiding systemic side effects and wide-spread neurotoxicity. To test this modality in a realistic environment, we developed a diblock copolypeptide hydrogel (DCH) capable of carrying and releasing paclitaxel, a compound that we found to be highly potent against primary gliomasphere cells. RESULTS: The DCH produced minimal tissue reactivity and was well tolerated in the immune-competent mouse brain. Paclitaxel-loaded hydrogel induced less tissue damage, cellular inflammation and reactive astrocytes than cremaphor-taxol (typical taxol-carrier) or hydrogel alone. In a deep subcortical xenograft model of glioblastoma in immunodeficient mice, injection of paclitaxel-loaded hydrogel led to local tumor control and improved survival. However, the tumor cells were highly migratory and were able to eventually escape the area of treatment. CONCLUSIONS: These findings suggest this technology may be ultimately applicable to patients with deep-seated inoperable tumors, but as currently formulated, complete tumor eradication would be highly unlikely. Future studies should focus on targeting the migratory potential of surviving cells.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Hidrogéis/química , Paclitaxel/uso terapêutico , Peptídeos/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sistema Nervoso Central/patologia , Portadores de Fármacos/química , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Paclitaxel/química , Taxa de Sobrevida , Temozolomida/química , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomaterials ; 32(2): 587-97, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20880573

RESUMO

Clinically available injectable hydrogels face technical challenges associated with swelling after injection and toxicity from unreacted constituents that impede their performance as surgical biomaterials. To overcome these challenges, we developed a system where chemical gelation was controlled by a conjugate Michael addition between thiol and acrylate in aqueous media, with 97% monomer conversion and 6 wt.% sol fraction. The hydrogel exhibited syneresis on equilibration, reducing to 59.7% of its initial volume. It had mechanical properties similar to soft human tissue with an elastic modulus of 189.8 kPa. Furthermore, a mesh size of 6.9 nm resulted in sustained release of methylprednisolone sodium succinate with a loading efficiency of 2 mg/mL. Functionalization with 50 µg/mL of an oligolysine peptide resulted in attachment of freshly isolated murine mesenchymal stem cells. The rational design of the physical, chemical and biological properties of the hydrogel makes it a potentially promising candidate for injectable applications.


Assuntos
Hidrogéis/química , Hemissuccinato de Metilprednisolona/química , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Animais , Células Cultivadas , Injeções , Células-Tronco Mesenquimais/metabolismo , Hemissuccinato de Metilprednisolona/administração & dosagem , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Acta Biomater ; 7(3): 936-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21081184

RESUMO

The aim of this study was to employ an experimental protocol for in vivo evaluation of sols of 5 wt.% poly(ethylene glycol) (PEG) in phosphate-buffered saline as artificial vitreous substitutes. A 20 gauge pars plana vitrectomy and posterior vitreous detachment were performed in the right eye of eight pigmented rabbits. Approximately 1 ml of the viscoelastic PEG sols was then injected into the vitreous space of six eyes. PEG with an average molecular weight of 300,000 and 400,000 g mol(-1) was used in two and four eyes, respectively. Two eyes received balanced salt solution and served as controls. Full-field electroretinography was carried out and intra-ocular pressure (IOP, palpation) measured pre- and post-operatively at regular intervals up to 41 days. The rabbits were killed and the eyes examined by retinal photography, gross macroscopic examination and histology. The viscoelastic sols were successfully injected and remained translucent throughout the post-operative period, with some inferior formation of precipitates. None of the eyes displayed IOP elevation post-operatively, but in three of the PEG sol injected eyes transient hypotony was noted. One eye sustained retinal detachment during surgery and another two in the post-operative period. ERG recordings confirmed preservation of retinal function in three out of four eyes injected with 400,000 g mol(-1) PEG. Histological examination revealed up-regulation of glial acidic fibrillary protein in Müller cells in PEG sol injected eyes, but normal overall morphology in eyes with attached retinas. The viscosity of the sol was not retained throughout the post-operative period, indicating the demand for polymer cross-linking to increase residence time. The results provide promising preliminary results on the use of PEG hydrogels as a vitreous substitute.


Assuntos
Modelos Animais , Polietilenoglicóis , Vitrectomia , Corpo Vítreo , Animais , Eletrorretinografia , Pressão Intraocular , Coelhos , Viscosidade
4.
Tissue Eng Part B Rev ; 14(4): 447-64, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18844605

RESUMO

Osteoarthritis (OA) is a prevalent degenerative joint disease that places a significant burden on the socioeconomic efficacy of communities around the world. Tissue engineering repair of articular cartilage in synovial joints represents a potential OA treatment strategy superior to current surgical techniques. In particular, osteochondral tissue engineering, which promotes the simultaneous regeneration of articular cartilage and underlining subchondral bone, may be a clinically relevant approach toward impeding OA progression. The unique and complex functional demands of the two contrasting tissues that comprise osteochondral tissue require the use of bilayered scaffolds to promote individual growth of both on a single integrated implant. This paper reviews the three current bilayered scaffold strategies applied to solve this challenging problem, with a focus on the need for an innovative approach to design and fabrication of new optimized scaffold combinations to reinforce materials science as an important element of osteochondral tissue engineering.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Artropatias/terapia , Osteoartrite/cirurgia , Osteocondrite/terapia , Engenharia Tecidual/métodos , Alicerces Teciduais , Implantes Absorvíveis , Materiais Biocompatíveis , Doenças das Cartilagens/patologia , Doenças das Cartilagens/fisiopatologia , Doenças das Cartilagens/cirurgia , Cartilagem Articular/citologia , Cartilagem Articular/fisiopatologia , Divisão Celular , Desenho de Equipamento , Humanos , Artropatias/fisiopatologia , Artropatias/cirurgia , Osteoartrite/epidemiologia , Regeneração , Ferimentos e Lesões/cirurgia , Ferimentos e Lesões/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA