Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000021

RESUMO

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Assuntos
Insuficiência Cardíaca , Insuficiência Renal Crônica , Camundongos , Animais , Humanos , Fator de Necrose Tumoral alfa/genética , Toxinas Urêmicas , Remodelação Ventricular , Insuficiência Cardíaca/etiologia
2.
EMBO Rep ; 24(7): e56574, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212043

RESUMO

Dysregulation of the activity of the mechanistic target of rapamycin complex 1 (mTORC1) is commonly linked to aging, cancer, and genetic disorders such as tuberous sclerosis (TS), a rare neurodevelopmental multisystemic disease characterized by benign tumors, seizures, and intellectual disability. Although patches of white hair on the scalp (poliosis) are considered as early signs of TS, the underlying molecular mechanisms and potential involvement of mTORC1 in hair depigmentation remain unclear. Here, we have used healthy, organ-cultured human scalp hair follicles (HFs) to interrogate the role of mTORC1 in a prototypic human (mini-)organ. Gray/white HFs exhibit high mTORC1 activity, while mTORC1 inhibition by rapamycin stimulated HF growth and pigmentation, even in gray/white HFs that still contained some surviving melanocytes. Mechanistically, this occurred via increased intrafollicular production of the melanotropic hormone, α-MSH. In contrast, knockdown of intrafollicular TSC2, a negative regulator of mTORC1, significantly reduced HF pigmentation. Our findings introduce mTORC1 activity as an important negative regulator of human HF growth and pigmentation and suggest that pharmacological mTORC1 inhibition could become a novel strategy in the management of hair loss and depigmentation disorders.


Assuntos
Folículo Piloso , Pigmentação , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Pigmentação/genética , Melanócitos , Cor de Cabelo/genética
3.
Fam Cancer ; 21(1): 85-90, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33219493

RESUMO

Bloom syndrome (BS) is a genomic and chromosomal instability disorder with prodigious cancer predisposition caused by pathogenic variants in BLM. We report the clinical and genetic details of a boy who first presented with infantile fibrosarcoma (IFS) at the age of 6 months and subsequently was diagnosed with BS at the age of 9 years. Molecular analysis identified the pathogenic germline BLM sequence variants (c.1642C>T and c.2207_2212delinsTAGATTC). This is the first report of IFS related to BS, for which we show that both BLM alleles are maintained in the tumor and demonstrate a TPM3-NTKR1 fusion transcript in the IFS. Our communication emphasizes the importance of long-term follow up after treatment for pediatric neoplastic conditions, as clues to important genetic entities might manifest later, and the identification of a heritable tumor predisposition often leads to changes in patient surveillance and management.


Assuntos
Síndrome de Bloom , Fibrossarcoma , Alelos , Síndrome de Bloom/genética , Criança , Fibrossarcoma/genética , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Masculino , RecQ Helicases/genética , Tropomiosina/genética , Tropomiosina/uso terapêutico
4.
Foot Ankle Spec ; 15(4): 354-360, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33025824

RESUMO

BACKGROUND: Jones fractures remain a challenging treatment entity in orthopaedics. Biomechanical stresses, including increased fifth metatarsal (5MT) lateral angle deviation (MLAD), are associated with increased fracture and refracture rates. Current fixation techniques produce good outcomes; however, they do not address metatarsal morphology, which can predispose to refracture. This study describes a novel surgical technique and case series utilizing intramedullary screw fixation and distal metatarsal corrective osteotomy for the management of Jones fractures. METHODS: A retrospective case series was undertaken, including 22 consecutive Jones fracture patients operated on by a single surgeon. Patient demographics, imaging, and operative information were obtained, with return to sport/previous function and radiological outcomes, including fracture union being the outcomes of interest. The surgical technique utilizes a distal osteotomy of the 5MT followed by retrograde guidewire and drilling utilizing the osteotomy. A cannulated screw is passed antegrade along the entire length of the 5MT with manual MLAD correction. Autograft or bone substitute (Augment) was then injected at the fracture site. RESULTS: Median age was 30 years (Q1, Q3: 18, 49 years). Median time from injury to operation was 13 weeks (Q1, Q3: 9, 30 weeks), and clinical follow-up period was 37 months (Q1, Q3: 14, 74 months). Radiological union was achieved at a median of 12 weeks (Q1, Q3: 8, 15 weeks) with clinical union at 11 weeks (Q1, Q3: 8, 14 weeks). All but one patient returned to preinjury functional levels, including 6 professional athletes who returned to preinjury national competition. No refractures were identified. CONCLUSION: The technique described in this study is a viable and safe means of managing Jones fractures. The technique may be particularly useful in patients with excessive MLAD. LEVELS OF EVIDENCE: Level IV: Retrospective case series.


Assuntos
Fraturas Ósseas , Ossos do Metatarso , Adulto , Parafusos Ósseos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Humanos , Ossos do Metatarso/diagnóstico por imagem , Ossos do Metatarso/lesões , Ossos do Metatarso/cirurgia , Estudos Retrospectivos
6.
J Am Soc Nephrol ; 31(12): 2833-2854, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32978267

RESUMO

BACKGROUND: Little is known about the roles of myeloid cell subsets in kidney injury and in the limited ability of the organ to repair itself. Characterizing these cells based only on surface markers using flow cytometry might not provide a full phenotypic picture. Defining these cells at the single-cell, transcriptomic level could reveal myeloid heterogeneity in the progression and regression of kidney disease. METHODS: Integrated droplet- and plate-based single-cell RNA sequencing were used in the murine, reversible, unilateral ureteric obstruction model to dissect the transcriptomic landscape at the single-cell level during renal injury and the resolution of fibrosis. Paired blood exchange tracked the fate of monocytes recruited to the injured kidney. RESULTS: A single-cell atlas of the kidney generated using transcriptomics revealed marked changes in the proportion and gene expression of renal cell types during injury and repair. Conventional flow cytometry markers would not have identified the 12 myeloid cell subsets. Monocytes recruited to the kidney early after injury rapidly adopt a proinflammatory, profibrotic phenotype that expresses Arg1, before transitioning to become Ccr2+ macrophages that accumulate in late injury. Conversely, a novel Mmp12+ macrophage subset acts during repair. CONCLUSIONS: Complementary technologies identified novel myeloid subtypes, based on transcriptomics in single cells, that represent therapeutic targets to inhibit progression or promote regression of kidney disease.


Assuntos
Nefropatias/etiologia , Nefropatias/patologia , Células Mieloides/fisiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Nefropatias/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Obstrução Ureteral/etiologia
7.
Eur J Med Genet ; 63(9): 103974, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32534991

RESUMO

Ligase IV (LIG4) syndrome is a rare disorder of DNA damage repair caused by biallelic, pathogenic variants in LIG4. This is a phenotypically heterogeneous condition with clinical presentation varying from lymphoreticular malignancies in developmentally normal individuals to significant microcephaly, primordial dwarfism, radiation hypersensitivity, severe combined immunodeficiency and early mortality. Renal defects have only rarely been described as part of the ligase IV disease spectrum. We identified a consanguineous family where three siblings presenting with antenatal growth retardation, microcephaly, severe renal anomalies and skeletal abnormalities, including radial ray defects. Autozygosity mapping and exome sequencing identified a novel homozygous frameshift variant in LIG4, c.597_600delTCAG, p.(Gln200LysfsTer33), which segregated in the family. LIG4 is encoded by a single exon and so this frameshift variant is predicted to result in a protein truncated by 678 amino acids. This is the shortest predicted LIG4 protein product reported and correlates with the most severe clinical phenotype described to date. We note the clinical overlap with Fanconi anemia and suggest that LIG4 syndrome is considered in the differential diagnosis of this severe developmental disorder.


Assuntos
Anormalidades Craniofaciais/genética , DNA Ligase Dependente de ATP/genética , Anemia de Fanconi/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Microcefalia/genética , Rim Displásico Multicístico/genética , Fenótipo , Rádio (Anatomia)/anormalidades , Adulto , Consanguinidade , Anormalidades Craniofaciais/patologia , Anemia de Fanconi/patologia , Feminino , Feto/anormalidades , Mutação da Fase de Leitura , Transtornos do Crescimento/patologia , Humanos , Síndromes de Imunodeficiência/patologia , Recém-Nascido , Masculino , Microcefalia/patologia , Rim Displásico Multicístico/patologia , Gravidez , Rádio (Anatomia)/embriologia
8.
Front Physiol ; 10: 1365, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803059

RESUMO

Chronic kidney disease (CKD) is prevalent worldwide and is associated with significant co-morbidities including cardiovascular disease (CVD). Traditionally, the subtotal nephrectomy (remnant kidney) experimental model has been performed in rats to model progressive renal disease. The model experimentally mimics CKD by reducing nephron number, resulting in renal insufficiency. Presently, there is a lack of translation of pre-clinical findings into successful clinical results. The pre-clinical nephrology field would benefit from reproducible progressive renal disease models in mice in order to avail of more widely available transgenics and experimental tools to dissect mechanisms of disease. Here we evaluate if a simplified single step subtotal nephrectomy (STNx) model performed in the 129S2/SV mouse can recapitulate the renal and cardiac changes observed in patients with CKD in a reproducible and robust way. The single step STNx surgery was well-tolerated and resulted in clinically relevant outcomes including hypertension, increased urinary albumin:creatinine ratio, and significantly increased serum creatinine, phosphate and urea. STNx mice developed significant left ventricular hypertrophy without reduced ejection fraction or cardiac fibrosis. Analysis of intra-renal inflammation revealed persistent recruitment of Ly6C hi monocytes transitioning to pro-fibrotic inflammatory macrophages in STNx kidneys. Unlike 129S2/SV mice, C57BL/6 mice exhibited renal fibrosis without proteinuria, renal dysfunction, or cardiac pathology. Therefore, the 129S2/SV genetic background is susceptible to induction of progressive proteinuric renal disease and cardiac hypertrophy using our refined, single-step flank STNx method. This reproducible model could be used to study the systemic pathophysiological changes induced by CKD in the kidney and the heart, intra-renal inflammation and for testing new therapies for CKD.

9.
Sci Rep ; 9(1): 11992, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427592

RESUMO

We report changes in the genomic landscape in the development of head and neck squamous cell carcinomas HNSCC from potentially premalignant lesions (PPOLS) to malignancy and lymph node metastases. Likely pathological mutations predominantly involved a relatively small set of genes reported previously (TP53, KMT2D, CDKN2A, PIK3CA, NOTCH1 and FAT1) but also other predicted cancer drivers (MGA, PABPC3, NR4A2, NCOR1 and MACF1). Notably, all these mutations arise early and are present in PPOLs. The most frequent genetic changes, which follow acquisition of immortality and loss of senescence, are of consistent somatic copy number alterations (SCNAs) involving chromosomal regions enriched for genes in known and previously unreported cancer-related pathways. We mapped the evolution of SCNAs in HNSCC progression. One of the earliest SCNAs involved deletions of CSMD1 (8p23.2). CSMD1 deletions or promoter hypermethylation were present in all of the immortal PPOLs and occurred at high frequency in the immortal HNSCC cell lines. Modulation of CSMD1 in cell lines revealed significant suppression of proliferation and invasion by forced expression, and significant stimulation of invasion by knockdown of expression. Known cancer drivers NOTCH1, PPP6C, RAC1, EIF4G1, PIK3CA showed significant increase in frequency of SCNA in transition from PPOLs to HNSCC that correlated with their expression. In the later stages of progression, HNSCC with and without nodal metastases showed some clear differences including high copy number gains of CCND1, hsa-miR-548k and TP63 in the metastases group.


Assuntos
Transformação Celular Neoplásica , Neoplasias de Cabeça e Pescoço/etiologia , Neoplasias de Cabeça e Pescoço/patologia , Biomarcadores , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Senescência Celular/genética , Mapeamento Cromossômico , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Progressão da Doença , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Instabilidade Genômica , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Mutação , Estadiamento de Neoplasias , Carcinoma de Células Escamosas de Cabeça e Pescoço/etiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
10.
World Neurosurg ; 126: 113-119, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30831299

RESUMO

BACKGROUND: Intracranial angiomatoid fibrous histiocytomas (AFHs) are very rare tumors. Histologically, classical cases have been reported exclusively in adults, with myxoid variants identified only in children. Here, we report the clinical presentation, treatment, biopsy, and molecular test results for 2 children with classical intracranial AFH and combine this with a literature review of published intracranial AFH and AFH-like cases. CASE DESCRIPTION: Two young girls presenting with abnormal neurologic signs, received diagnoses of intracranial AFHs from histopathologic analysis. No myxoid features were identified. Fluorescence in situ hybridization and reverse transcriptase polymerase chain reaction testing demonstrated EWS1-ATF1 and EWS1-CREM gene fusions, respectively, verified by Sanger sequencing. Both patients underwent surgery only. The first child experienced local recurrence 5 years from initial surgery. Following a further complete resection, this patient has remained recurrence free over a subsequent 6-year follow-up period. The second patient has recently experienced local multinodular recurrence 28 months after initial surgery and is awaiting surgical re-excision. No additional chemotherapy/radiotherapy has been administered to either patient. CONCLUSIONS: This report describes the first 2 cases of nonmyxoid intracranial AFH in children; confirmed by molecular analysis. Our results suggest that a tumor spectrum incorporating classical and myxoid intracranial AFHs can occur in children and that gross total resection represents the treatment strategy of choice at diagnosis or following recurrence.


Assuntos
Neoplasias Encefálicas/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Histiocitoma Fibroso Maligno/genética , Fusão Oncogênica , Proteína EWS de Ligação a RNA/genética , Adolescente , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Criança , Feminino , Histiocitoma Fibroso Maligno/diagnóstico por imagem , Histiocitoma Fibroso Maligno/patologia , Histiocitoma Fibroso Maligno/cirurgia , Humanos , Imageamento por Ressonância Magnética
11.
Am J Hum Genet ; 101(6): 1021-1033, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220674

RESUMO

ACTB encodes ß-actin, an abundant cytoskeletal housekeeping protein. In humans, postulated gain-of-function missense mutations cause Baraitser-Winter syndrome (BRWS), characterized by intellectual disability, cortical malformations, coloboma, sensorineural deafness, and typical facial features. To date, the consequences of loss-of-function ACTB mutations have not been proven conclusively. We describe heterozygous ACTB deletions and nonsense and frameshift mutations in 33 individuals with developmental delay, apparent intellectual disability, increased frequency of internal organ malformations (including those of the heart and the renal tract), growth retardation, and a recognizable facial gestalt (interrupted wavy eyebrows, dense eyelashes, wide nose, wide mouth, and a prominent chin) that is distinct from characteristics of individuals with BRWS. Strikingly, this spectrum overlaps with that of several chromatin-remodeling developmental disorders. In wild-type mouse embryos, ß-actin expression was prominent in the kidney, heart, and brain. ACTB mRNA expression levels in lymphoblastic lines and fibroblasts derived from affected individuals were decreased in comparison to those in control cells. Fibroblasts derived from an affected individual and ACTB siRNA knockdown in wild-type fibroblasts showed altered cell shape and migration, consistent with known roles of cytoplasmic ß-actin. We also demonstrate that ACTB haploinsufficiency leads to reduced cell proliferation, altered expression of cell-cycle genes, and decreased amounts of nuclear, but not cytoplasmic, ß-actin. In conclusion, we show that heterozygous loss-of-function ACTB mutations cause a distinct pleiotropic malformation syndrome with intellectual disability. Our biological studies suggest that a critically reduced amount of this protein alters cell shape, migration, proliferation, and gene expression to the detriment of brain, heart, and kidney development.


Assuntos
Anormalidades Múltiplas/genética , Actinas/genética , Deficiências do Desenvolvimento/genética , Haploinsuficiência/genética , Actinas/biossíntese , Adolescente , Adulto , Idoso , Animais , Ciclo Celular/genética , Proliferação de Células/genética , Criança , Pré-Escolar , Códon sem Sentido/genética , Coloboma/genética , Fácies , Feminino , Mutação da Fase de Leitura/genética , Deleção de Genes , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Malformações do Desenvolvimento Cortical/genética , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , Adulto Jovem
13.
Hum Mutat ; 38(4): 426-438, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28058752

RESUMO

Calcium (Ca2+ ) is a physiological key factor, and the precise modulation of free cytosolic Ca2+ levels regulates multiple cellular functions. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ homeostasis, and is mediated by the concerted activity of the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Dominant gain-of-function mutations in STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, whereas recessive loss-of-function mutations are associated with immunodeficiency. Here, we report the identification and functional characterization of novel ORAI1 mutations in TAM patients. We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that the G98S and V107M mutations generate constitutively permeable ORAI1 channels, whereas T184M alters the channel permeability only in the presence of STIM1. These data indicate a mutation-dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 mutations associated with the most severe symptoms induce the strongest functional cellular effect. Examination of the non-muscle features of our patients strongly suggests that TAM and Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the importance of SOCE in skeletal muscle physiology, and provide new insights in the pathomechanisms involving aberrant Ca2+ homeostasis and leading to muscle dysfunction.


Assuntos
Ativação do Canal Iônico/genética , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/genética , Proteína ORAI1/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Transtornos Plaquetários/genética , Transtornos Plaquetários/metabolismo , Cálcio/metabolismo , Células Cultivadas , Dislexia/genética , Dislexia/metabolismo , Eritrócitos Anormais/metabolismo , Feminino , Células HEK293 , Humanos , Ictiose/genética , Ictiose/metabolismo , Masculino , Camundongos Knockout , Microscopia de Fluorescência/métodos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Miose/genética , Miose/metabolismo , Fadiga Muscular/genética , Miopatias Congênitas Estruturais/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Linhagem , Homologia de Sequência de Aminoácidos , Baço/anormalidades , Baço/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
14.
Eur J Med Genet ; 59(11): 577-583, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27667191

RESUMO

Raine syndrome is a rare autosomal recessive bone dysplasia characterized by characteristic facial features with exophthalmos and generalized osteosclerosis. Amelogenesis imperfecta, hearing loss, seizures, and intracerebral calcification are apparent in some affected individuals. Originally, Raine syndrome was originally reported as a lethal syndrome. However, recently a milder phenotype, compatible with life, has been described. Biallelic variants inFAM20C, encoding aGolgi casein kinase involved in biomineralisation, have been identified in affected individuals. We report here a consanguineous Moroccan family with two affected siblingsa girl aged 18 and a boy of 15years. Clinical features, including learning disability, seizures and amelogenesis imperfecta, initially suggested a diagnosis of Kohlschutter-Tonz syndrome. However,a novel homozygous FAM20Cvariantc.676T > A, p.(Trp226Arg) was identified in the affected siblings. Our report reinforces that Raine syndrome is compatible with life, and that mild hypophosphatemia and amelogenesis imperfecta are key features of the attenuated form.


Assuntos
Anormalidades Múltiplas/genética , Amelogênese Imperfeita/genética , Caseína Quinase I/genética , Fissura Palatina/genética , Demência/genética , Diagnóstico Diferencial , Epilepsia/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Microcefalia/genética , Osteosclerose/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/mortalidade , Anormalidades Múltiplas/fisiopatologia , Adolescente , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/mortalidade , Amelogênese Imperfeita/fisiopatologia , Doenças do Desenvolvimento Ósseo/genética , Doenças do Desenvolvimento Ósseo/mortalidade , Doenças do Desenvolvimento Ósseo/fisiopatologia , Fissura Palatina/diagnóstico , Fissura Palatina/mortalidade , Fissura Palatina/fisiopatologia , Demência/diagnóstico , Demência/mortalidade , Demência/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/mortalidade , Epilepsia/fisiopatologia , Exoftalmia/diagnóstico , Exoftalmia/mortalidade , Exoftalmia/fisiopatologia , Feminino , Humanos , Deficiências da Aprendizagem/genética , Deficiências da Aprendizagem/fisiopatologia , Masculino , Microcefalia/diagnóstico , Microcefalia/mortalidade , Microcefalia/fisiopatologia , Osteosclerose/diagnóstico , Osteosclerose/mortalidade , Osteosclerose/fisiopatologia , Fenótipo , Convulsões/genética , Convulsões/fisiopatologia
15.
Nat Genet ; 48(10): 1185-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571260

RESUMO

Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Adolescente , Adulto , Calcinose/genética , Calcinose/patologia , Linhagem Celular , Doenças de Pequenos Vasos Cerebrais/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 17 , Estudos de Coortes , Cistos/genética , Cistos/patologia , Exoma , Feminino , Ligação Genética , Genoma Humano , Humanos , Lactente , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Adulto Jovem
17.
Neurology ; 84(2): 141-7, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25480913

RESUMO

OBJECTIVES: We aimed to determine the proportion of individuals in our schwannomatosis cohort whose disease is associated with an LZTR1 mutation. METHODS: We used exome sequencing, Sanger sequencing, and copy number analysis to screen 65 unrelated individuals with schwannomatosis who were negative for a germline NF2 or SMARCB1 mutation. We also screened samples from 39 patients with a unilateral vestibular schwannoma (UVS), plus at least one other schwannoma, but who did not have an identifiable germline or mosaic NF2 mutation. RESULTS: We identified germline LZTR1 mutations in 6 of 16 patients (37.5%) with schwannomatosis who had at least one affected relative, 11 of 49 (22%) sporadic patients, and 2 of 39 patients with UVS in our cohort. Three germline mutation-positive patients in total had developed a UVS. Mosaicism was excluded in 3 patients without germline mutation in NF2, SMARCB1, or LZTR1 by mutation screening in 2 tumors from each. CONCLUSIONS: Our data confirm the relationship between mutations in LZTR1 and schwannomatosis. They indicate that germline mutations in LZTR1 confer an increased risk of vestibular schwannoma, providing further overlap with NF2, and that further causative genes for schwannomatosis remain to be identified.


Assuntos
Neurilemoma/genética , Neurofibromatoses/genética , Neuroma Acústico/genética , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Perda de Heterozigosidade , Masculino , Linhagem , Análise de Sequência de DNA
18.
Am J Hum Genet ; 95(6): 698-707, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25434003

RESUMO

Mutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida. The U5 spliceosomal complex of eight highly conserved proteins is critical for pre-mRNA splicing. We identified biallelic mutations in TXNL4A, a member of this complex, in individuals with Burn-McKeown syndrome (BMKS). This rare condition is characterized by bilateral choanal atresia, hearing loss, cleft lip and/or palate, and other craniofacial dysmorphisms. Mutations were found in 9 of 11 affected families. In 8 families, affected individuals carried a rare loss-of-function mutation (nonsense, frameshift, or microdeletion) on one allele and a low-frequency 34 bp deletion (allele frequency 0.76%) in the core promoter region on the other allele. In a single highly consanguineous family, formerly diagnosed as oculo-oto-facial dysplasia, the four affected individuals were homozygous for a 34 bp promoter deletion, which differed from the promoter deletion in the other families. Reporter gene and in vivo assays showed that the promoter deletions led to reduced expression of TXNL4A. Depletion of TXNL4A (Dib1) in yeast demonstrated reduced assembly of the tri-snRNP complex. Our results indicate that BMKS is an autosomal-recessive condition, which is frequently caused by compound heterozygosity of low-frequency promoter deletions in combination with very rare loss-of-function mutations.


Assuntos
Atresia das Cóanas/genética , Surdez/congênito , Deleção de Genes , Cardiopatias Congênitas/genética , Regiões Promotoras Genéticas/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Spliceossomos/genética , Alelos , Pré-Escolar , Atresia das Cóanas/diagnóstico , Surdez/diagnóstico , Surdez/genética , Exossomos/genética , Fácies , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , Genes Reporter , Cardiopatias Congênitas/diagnóstico , Heterozigoto , Homozigoto , Humanos , Masculino , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Fenótipo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Análise de Sequência de DNA , Spliceossomos/metabolismo
19.
J Clin Oncol ; 32(36): 4155-61, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25403219

RESUMO

PURPOSE: Heterozygous germline PTCH1 mutations are causative of Gorlin syndrome (naevoid basal cell carcinoma), but detection rates > 70% have rarely been reported. We aimed to define the causative mutations in individuals with Gorlin syndrome without PTCH1 mutations. METHODS: We undertook exome sequencing on lymphocyte DNA from four unrelated individuals from families with Gorlin syndrome with no PTCH1 mutations found by Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), or RNA analysis. RESULTS: A germline heterozygous nonsense mutation in SUFU was identified in one of four exomes. Sanger sequencing of SUFU in 23 additional PTCH1-negative Gorlin syndrome families identified a SUFU mutation in a second family. Copy-number analysis of SUFU by MLPA revealed a large heterozygous deletion in a third family. All three SUFU-positive families fulfilled diagnostic criteria for Gorlin syndrome, although none had odontogenic jaw keratocysts. Each SUFU-positive family included a single case of medulloblastoma, whereas only two (1.7%) of 115 individuals with Gorlin syndrome and a PTCH1 mutation developed medulloblastoma. CONCLUSION: We demonstrate convincing evidence that SUFU mutations can cause classical Gorlin syndrome. Our study redefines the risk of medulloblastoma in Gorlin syndrome, dependent on the underlying causative gene. Previous reports have found a 5% risk of medulloblastoma in Gorlin syndrome. We found a < 2% risk in PTCH1 mutation-positive individuals, with a risk up to 20× higher in SUFU mutation-positive individuals. Our data suggest childhood brain magnetic resonance imaging surveillance is justified in SUFU-related, but not PTCH1-related, Gorlin syndrome.


Assuntos
Síndrome do Nevo Basocelular/genética , Neoplasias Cerebelares/genética , Mutação em Linhagem Germinativa , Meduloblastoma/genética , Receptores de Superfície Celular/genética , Proteínas Repressoras/genética , Neoplasias Cerebelares/etiologia , Humanos , Imageamento por Ressonância Magnética , Meduloblastoma/etiologia , Receptores Patched , Receptor Patched-1 , Risco
20.
Nat Genet ; 46(5): 503-509, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24686847

RESUMO

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , RNA Helicases DEAD-box/genética , Interferon Tipo I/imunologia , Modelos Moleculares , Mutação/genética , Malformações do Sistema Nervoso/genética , Fenótipo , Transdução de Sinais/genética , Análise de Variância , Doenças Autoimunes do Sistema Nervoso/imunologia , Sequência de Bases , RNA Helicases DEAD-box/química , Ensaio de Desvio de Mobilidade Eletroforética , Exoma/genética , Células HEK293 , Humanos , Helicase IFIH1 Induzida por Interferon , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Malformações do Sistema Nervoso/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA