Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36656118

RESUMO

Trisomy 21, the genetic cause of Down syndrome, disrupts primary cilia formation and function, in part through elevated Pericentrin, a centrosome protein encoded on chromosome 21. Yet how trisomy 21 and elevated Pericentrin disrupt cilia-related molecules and pathways, and the in vivo phenotypic relevance remain unclear. Utilizing ciliogenesis time course experiments combined with light microscopy and electron tomography, we reveal that chromosome 21 polyploidy elevates Pericentrin and microtubules away from the centrosome that corral MyosinVA and EHD1, delaying ciliary membrane delivery and mother centriole uncapping essential for ciliogenesis. If given enough time, trisomy 21 cells eventually ciliate, but these ciliated cells demonstrate persistent trafficking defects that reduce transition zone protein localization and decrease sonic hedgehog signaling in direct anticorrelation with Pericentrin levels. Consistent with cultured trisomy 21 cells, a mouse model of Down syndrome with elevated Pericentrin has fewer primary cilia in cerebellar granule neuron progenitors and thinner external granular layers at P4. Our work reveals that elevated Pericentrin from trisomy 21 disrupts multiple early steps of ciliogenesis and creates persistent trafficking defects in ciliated cells. This pericentrosomal crowding mechanism results in signaling deficiencies consistent with the neurological phenotypes found in individuals with Down syndrome.


Human cells typically have 23 pairs of structures known as chromosomes. Each chromosome contains a unique set of genes which provide the instructions needed to make proteins and other essential molecules found in the body. Individuals with Down syndrome have an extra copy of chromosome 21. This genetic alteration is known as trisomy 21 and affects many different organs in the body, leading to various medical conditions including intellectual disability, heart defects, and immune deficiencies. A recent study showed that cells from individuals with Down syndrome had defects in forming primary cilia ­ structures on the surface of cells which work as signaling hubs to control how cells grow and develop. These cilia defects were in large part due to excess levels of a protein known as Pericentrin, which is encoded by a gene found on chromosome 21. But it is unclear how Pericentrin disrupts cilia assembly, and how this may contribute to the medical conditions observed in individuals with Down syndrome. To address these questions, Jewett et al. studied human cells that had been engineered to have trisomy 21. The experiments found that trisomy 21 led to higher levels of Pericentrin and altered the way molecules were organized at the sites where primary cilia form. This caused the components required to build and maintain the primary cilium to become trapped in the wrong locations. The trisomy 21 cells were eventually able to rearrange the molecules and build a primary cilium, but it took them twice as long as cells with 23 pairs of chromosomes and their primary cilium did not properly work. Further experiments were then conducted on mice that had been engineered to have an extra copy of a portion of genes on human chromosome 21, including the gene for Pericentrin. Jewett et al. found that these mice assembled cilia later and had defects in cilia signaling, similar to the human trisomy 21 cells. This resulted in mild abnormalities in brain development that were consistent with what occurs in individuals with Down syndrome. These findings suggest that the elevated levels of Pericentrin in trisomy 21 causes changes in cilia formation and function which, in turn, may alter how the mouse brain develops. Further studies will be required to find out whether defects in primary cilia may contribute to other medical conditions observed in individuals with Down syndrome.


Assuntos
Síndrome de Down , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo
2.
Methods Mol Biol ; 2473: 129-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35819763

RESUMO

Electron tomography of the chemical synapse provides important architectural information regarding the organization of synaptic organelles including synaptic vesicles, Nissl bodies, and early endosomes. Here, we describe methods for the preparation of select murine brain regions for high-pressure freezing, freeze substitution, and EM tomographic analysis of synaptic structures. The method uses fresh brain slices prepared using a vibratome and biopsy punches to collect specific brain regions of interest suitable for subsequent preservation and EM tomographic imaging.


Assuntos
Tomografia com Microscopia Eletrônica , Elétrons , Animais , Tomografia com Microscopia Eletrônica/métodos , Substituição ao Congelamento , Camundongos , Organelas , Sinapses
3.
Mol Biol Cell ; 30(21): 2659-2680, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31483737

RESUMO

Ciliary motility depends on both the precise spatial organization of multiple dynein motors within the 96 nm axonemal repeat and the highly coordinated interactions between different dyneins and regulatory complexes located at the base of the radial spokes. Mutations in genes encoding cytoplasmic assembly factors, intraflagellar transport factors, docking proteins, dynein subunits, and associated regulatory proteins can all lead to defects in dynein assembly and ciliary motility. Significant progress has been made in the identification of dynein subunits and extrinsic factors required for preassembly of dynein complexes in the cytoplasm, but less is known about the docking factors that specify the unique binding sites for the different dynein isoforms on the surface of the doublet microtubules. We have used insertional mutagenesis to identify a new locus, IDA8/BOP2, required for targeting the assembly of a subset of inner dynein arms (IDAs) to a specific location in the 96 nm repeat. IDA8 encodes flagellar-associated polypeptide (FAP)57/WDR65, a highly conserved WD repeat, coiled coil domain protein. Using high resolution proteomic and structural approaches, we find that FAP57 forms a discrete complex. Cryo-electron tomography coupled with epitope tagging and gold labeling reveal that FAP57 forms an extended structure that interconnects multiple IDAs and regulatory complexes.


Assuntos
Proteínas de Algas/metabolismo , Axonema/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Proteômica/métodos , Proteínas de Algas/genética , Sequência de Aminoácidos , Axonema/genética , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cílios/genética , Cílios/ultraestrutura , Microscopia Crioeletrônica/métodos , Dineínas/genética , Tomografia com Microscopia Eletrônica , Flagelos/genética , Flagelos/ultraestrutura , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Gravação de Videoteipe/métodos
4.
Cytoskeleton (Hoboken) ; 69(8): 577-90, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22573610

RESUMO

In the past decade, investigations from several different fields have revealed the critical role of cilia in human health and disease. Because of the highly conserved nature of the basic axonemal structure, many different model systems have proven useful for the study of ciliopathies, especially the unicellular, biflagellate green alga Chlamydomonas reinhardtii. Although the basic axonemal structure of cilia and flagella is highly conserved, these organelles often perform specialized functions unique to the cell or tissue in which they are found. These differences in function are likely reflected in differences in structural organization. In this work, we directly compare the structure of isolated axonemes from human cilia and Chlamydomonas flagella to identify similarities and differences that potentially play key roles in determining their functionality. Using transmission electron microscopy and 2D image averaging techniques, our analysis has confirmed the overall structural similarity between these two species, but also revealed clear differences in the structure of the outer dynein arms, the central pair projections, and the radial spokes. We also show how the application of 2D image averaging can clarify the underlying structural defects associated with primary ciliary dyskinesia (PCD). Overall, our results document the remarkable similarity between these two structures separated evolutionarily by over a billion years, while highlighting several significant differences, and demonstrate the potential of 2D image averaging to improve the diagnosis and understanding of PCD.


Assuntos
Axonema/ultraestrutura , Chlamydomonas/ultraestrutura , Cílios/ultraestrutura , Flagelos/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Axonema/metabolismo , Chlamydomonas/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/metabolismo , Humanos , Síndrome de Kartagener/patologia
5.
Cell ; 135(5): 894-906, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041752

RESUMO

During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.


Assuntos
Cinesinas/metabolismo , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Proteínas Motores Moleculares , Mutação , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
Genes Dev ; 22(1): 91-105, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18086858

RESUMO

beta-Catenin plays important roles in cell adhesion and gene transcription, and has been shown recently to be essential for the establishment of a bipolar mitotic spindle. Here we show that beta-catenin is a component of interphase centrosomes and that stabilization of beta-catenin, mimicking mutations found in cancers, induces centrosome splitting. Centrosomes are held together by a dynamic linker regulated by Nek2 kinase and its substrates C-Nap1 (centrosomal Nek2-associated protein 1) and Rootletin. We show that beta-catenin binds to and is phosphorylated by Nek2, and is in a complex with Rootletin. In interphase, beta-catenin colocalizes with Rootletin between C-Nap1 puncta at the proximal end of centrioles, and this localization is dependent on C-Nap1 and Rootletin. In mitosis, when Nek2 activity increases, beta-catenin localizes to centrosomes at spindle poles independent of Rootletin. Increased Nek2 activity disrupts the interaction of Rootletin with centrosomes and results in binding of beta-catenin to Rootletin-independent sites on centrosomes, an event that is required for centrosome separation. These results identify beta-catenin as a component of the intercentrosomal linker and define a new function for beta-catenin as a key regulator of mitotic centrosome separation.


Assuntos
Centrossomo/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , beta Catenina/metabolismo , Animais , Proteínas do Domínio Armadillo/metabolismo , Células Cultivadas , Centrossomo/enzimologia , Proteínas do Citoesqueleto/análise , Proteínas do Citoesqueleto/metabolismo , Cães , Humanos , Interfase , Quinases Relacionadas a NIMA , Proteínas/análise , Proteínas/metabolismo , beta Catenina/análise , tRNA Metiltransferases
7.
Curr Biol ; 16(19): 1944-9, 2006 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17027492

RESUMO

Katanin is a heterodimer that exhibits ATP-dependent microtubule-severing activity in vitro. In Xenopus egg extracts, katanin activity correlates with the addition of cyclin B/cdc2, suggesting a role for microtubule severing in the disassembly of long interphase microtubules as the cell prepares for mitosis. However, studies from plant cells, cultured neurons, and nematode embryos suggest that katanin could be required for the organization or postnucleation processing of microtubules, rather than the dissolution of microtubule structures. Here we reexamine katanin's role by studying acentrosomal female meiotic spindles in C. elegans embryos. In mutant embryos lacking katanin, microtubules form around meiotic chromatin but do not organize into bipolar spindles. By using electron tomography, we found that katanin converts long microtubule polymers into shorter microtubule fragments near meiotic chromatin. We further show that turning on katanin during mitosis also creates a large pool of short microtubules near the centrosome. Furthermore, the identification of katanin-dependent microtubule lattice defects supports a mechanism involving an initial perforation of the protofilament wall. Taken together, our data suggest that katanin is used during meiotic spindle assembly to increase polymer number from a relatively inefficient chromatin-based microtubule nucleation pathway.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/enzimologia , Meiose/fisiologia , Proteínas dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Cromatina/ultraestrutura , Simulação por Computador , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Katanina , Proteínas dos Microtúbulos/genética , Modelos Biológicos , Modelos Moleculares , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
8.
Dev Cell ; 9(2): 237-48, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16054030

RESUMO

In vertebrates, the microtubule binding protein TPX2 is required for meiotic and mitotic spindle assembly. TPX2 is also known to bind to and activate Aurora A kinase and target it to the spindle. However, the relationship between the TPX2-Aurora A interaction and the role of TPX2 in spindle assembly is unclear. Here, we identify TPXL-1, a C. elegans protein that is the first characterized invertebrate ortholog of TPX2. We demonstrate that an essential role of TPXL-1 during mitosis is to activate and target Aurora A to microtubules. Our data suggest that this targeting stabilizes microtubules connecting kinetochores to the spindle poles. Thus, activation and targeting of Aurora A appears to be an ancient and conserved function of TPX2 that plays a central role in mitotic spindle assembly.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/fisiologia , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/fisiologia , Proteínas Quinases/metabolismo , Fuso Acromático/fisiologia , Proteínas de Xenopus/metabolismo , Sequência de Aminoácidos , Animais , Aurora Quinases , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Embrião não Mamífero/fisiologia , Ativação Enzimática , Humanos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Homologia de Sequência de Aminoácidos , Fuso Acromático/genética , Proteínas de Xenopus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA